Cascading - User Guide

Concurrent, Inc

’—?{a@

V1.2
Copyright © 2007-2010 Concurrent, Inc
Published December, 2010

Table of Contents

=S o= o1 ¢ o TP 1
1.1, WhaL 1S CaSCaING? ... ettt ettt ettt ettt et a e e et et e e e e aaa e e eaaans 1

1.2. Who Should USE CasCating?ccuuiiiiieiiieiiii e et e e e e e e e e e e e e e e e et e e s e e et e e et e eanaeees 1

1.3. What 1S APACNE HAOOOP ...ttt ettt et e e e et e e et e e et e eaaaees 2

P22 B 1Y/ 1 o o T 1 o PSP 3
G I T = . (0o 1o P 6
130 B [L oo (3 1o o RSP P U PPTTUPPPPTTRUPPPIN 6

3.2 PIPE ASSEMDIIES <.t e 6
Assembling PIPe ASSEMDIIESciii e 7

EaCh and BEVENY PIPES ... ceiiiiiei et et et aa s 8

GroupBY and COGIOUD PIPES ettt ettt et ettt ettt et e e e e e enaes 11

S0 1 1] oo 15

3.3, SOUICE @NA SINK TS «.euietiieie ettt ettt et et e et e et e e et e e e ta et et e e et e e et e eanaaeennas 16

S BRI AIGEDIA .. e 18

K ST o S PP S 20
Creating FIows from Pipe ASSEMDIIES ...t e 21
CoNfIGUITNG FIOWS ... ettt e et e e b 22

SKIPPING FIOWS .o e e e e e e et e e e e e e e e et e e e e ean s 22

Creating FIows from a JODCONToou e 23

Creating CUSIOM FIOWSoeiiie et e e e et e e b 23

K T O S o o PP TTTTTI 23

4. EXECULING PIOCESSESuietiieiti ettt ettt ettt oottt e et e ettt ettt e e e a e e et e ettt et aa e e et e e et e e ean e e e ta e aeanaaeennas 25
g T 1 o [Tox 1 o o 25

R U 11 o [oo S 25

G T @7o 01110 041 o H PRSPPI 27

N = o N 1] o PPN 28

5. Using and Developing OPEraliOnNScuuuiiiunieiiiieiteeeieeeet e e e e e e s e saa e et e e et e e et aesan e eaneeanneeetnaeeanaares 29
oI B [L oo (8 1o o RSP TUPP TP 29

T2 o £ o] 30

ST T 1L = PP RSSPUPPPTTN 31

e o (< o = (0] S PSP PPTPPRN 33

TR = T = 37

5.6. Operation and BascOPerationccuuieiiiieiiie e e e e e e e e e e e e e e 40

6. ACQVANCEA PrOCESSING ... eetuiitieit ettt et ettt ettt et e ettt ettt e e et e e et e e etn e ean e eateaeanaaeanas 41
B.1. SUDASSEMDIIES ...t e e e e e e e e e e e e e e r e aannn 41

6.2, SIEAM ASSEIMTIONSeieeetiiii e e ettt e et e e e e e e e e e e e e e e e r e e nnnne 43

ORI = 1 LU = < S USSP 45

B.4. EVENE HANAIINGceeieiiiii ettt et e eaaas 46

LR = 101 = (= =0 1 47

LS S v £ o 11 ¢ o TSP 47

6.7. CUSIOM TaPS aNA SCHEMESouiiieei et e 48

6.8. Custom Types and SerialiZaLiONc.uuiieuieii e e e e 48

6.9. Partial Aggregation instead of COMDINEISiiiiiii e 49

7. BUIE-TN OPEIBIIONS ...ttt et e ettt e e et b e e e e bt e e ettt e e e eab e e e eaaa s 51

CascadingV 1.2 Cascading - User Guide ii

Cascading - User Guide

7.1 1dENtity FUNCLION ..ottt et e e et e e e e et e e eenans 51
728 1= o 18 o 0 Tox 4 o 53
7.3. Sample and Limit FUNCHIONSiiuiiiiee et e e e e e e eanns 53
A == T o o P 53
7.5, TEXE FUNCLIONSoieeeiitis ettt e e et e e e e e e e e e r e e e e e e e e nnnnaees 53
7.6. Regular EXPresSsion OPEIALiONScoeuuiie ittt e e et e e e et et e et e et e e e e e et e e ean e eenas 54
7.7. Java EXPreSSiON OPEIALIONSoieeuei ettt ettt ettt e e e e et et et e e e e e e e b 56
T Y I o = o] = N 57
7.9, ASSEITIONS ...ttt ettt e e 58
7.10. LOQICAl Flter OPEIAIOIS ... cieeetu ettt ettt ettt et ettt et e e et et e ebe e e e e e e enaans 59
8. BESE PIBCLICES ...t iii ettt 61
ST L o 1 A ==] o PP PP PPTRPPN 61
8.2, FIOW GFaNUIBITLY ...eevnieeiiii ettt ettt et ettt et et e e e et e e e et e e e eab e e eeeans 61
8.3. SUDASSEMDIIES, NOt FACIOMESceiiieeiiii ettt e e e e e e ennnnes 61
8.4. Give SubAssemblies Logical ReSPONSIDIItIEScceuniiiiiiiiie e 61
8.5. Java Operators in FIEld NAIMESooiii e e 62
8.6. Debugging Planner FallUrESoveuiiii e e e e e e e e e e e e e eans 62
8.7. OPUMIZING JOINS ...ttt et et e et e et e e et e et ta e e e e e e et e e et e e et e e ean e eaneeeen 62
8.8. DEDUGING SIIAIMS ...ttt ettt ettt ettt ettt ettt ettt e et et r e e e et e e e e aaa e e ennans 62
8.9. Handling GOOd and Bat Dalac.uuevuriiieieeiieeei e eeie e e e e e e e e e e e e et s e e et e e e e e et e e anneeenas 62
8.10. Maintaining State iN OPEIELIONSc.uieieeiii ettt e e et e e et e e e e e et e e ea e eannas 63
S I O (o B Y/ o= S PSPPI 63
I = [0 S 00 = | PP 63
8.13. LOOK &t the SOUICE COOEueiieiii ettt e 63
LS oo q =TT P 64
LS N W 1= 3= o [= o[64
S (= TS 0= oo [P P PP RUP 64
9.3. COMIMON OPEIGLIONSeetueeeetie ettt e ettt e et e et e et e e ettt e e et et e e et et e e e e et e e e e et e e eeenanaes 66
S (= g T @ 0 L= T o 66
0.5, AP USBOE ..ttt ettt ettt e et e e e e e e aeene 67
O o T T 1Y T 69
10.1. MaPREAUCE JOD Planmerccuuiei e e e e e e e e e e e e 69
10.2. The Cascade Topological SCheduler ..o 69

CascadingV 1.2 Cascading - User Guide i

1. Cascading
1.1 What is Cascading?

Cascading is a Query APl and Query Planner used for defining, sharing, and executing data processing workflows
on adistributed data grid or cluster.

Cascading relies on Apache Hadoop. To use Cascading, Hadoop must beinstalled locally for devel opment and testing,
and a Hadoop cluster must be deployed for production applications.

Cascading greatly simplifies the compl exities with Hadoop application development, job creation, and job scheduling.

1.2 Who should use Cascading?

Cascading was developed to allow organizations to rapidly develop complex data processing applications. These
applications come in two extremes.

On one hand, there istoo much datafor a single computing system to manage effectively. Devel opers have decided to
adopt Apache Hadoop as the base computing infrastructure, but realize that devel oping reasonably useful applications
on Hadoop is not trivial. Cascading eases the burden on devel opers by allowing them to rapidly create, refactor, test,
and execute complex applications that scale linearly across a cluster of computers.

On the other hand, managers and developers realize the complexity of the processes in their data center is getting
out of hand with one-off data-processing applications living wherever there is enough disk space or available CPU.
Subsequently they have decided to adopt Apache Hadoop to gain access to its "Global Namespace” file system which
allows for a single reliable storage framework. Cascading eases the learning curve for developers to convert their
existing applications for execution on aHadoop cluster. It further allowsfor devel opersto create reusablelibraries and
application for use by analysts who need to extract data from the Hadoop file system.

Cascading was designed to support three user roles. The application Executor, process Assembler, and the operation
Developer.

The application Executor is someone, a developer or analyst, or some system (like a cron job) which runs a data
processing application on agiven cluster. Thisistypically doneviathe command line using a pre-packaged Java Jar file
compiled against the A pache Hadoop and Cascading libraries. This application may accept command line parameters
to customize it for an given execution and generally resultsin a set of data the user will export from the Hadoop file
system for some specific purpose.

The process Assembler is someone who assembles data processing workflows into unique applications. This is
generally adevelopment task of chaining together operations that act on input data sets to produce one or more output
data sets. This task can be done using the raw Java Cascading API or via a scripting language like Cascal og/Clojure,
Groovy, JRuby, or Jython.

The operation Devel oper is someone who writesindividual functions or operations, typically in Java, or reusable sub-
assemblies that act on the data that pass through the data processing workflow. A simple example would be a parser
that takes a string and convertsit to an Integer. Operations are equivalent to Java functionsin the sense that they take

CascadingV 1.2 Cascading - User Guide 1

Cascading

input arguments and return data. And they can execute at any granularity, simply parsing a string, or performing some
complex routine on the argument data using third-party libraries.

All three roles can be adevel oper, but the API allowsfor a clean separation of responsibilitiesfor larger organizations
that need non-devel opers to run ad-hoc applications or build production processes on a Hadoop cluster.

1.3 What is Apache Hadoop

From the Hadoop website, it “is a software platform that lets one easily write and run applications that process vast
amounts of data”.

To be alittle more specific, Hadoop provides a storage layer that holds vast amounts of data, and an execution layer
for running an application in parallel across the cluster against parts of the stored data.

The storage layer, the Hadoop File System (HDFS), looks like a single storage volume that has been optimized for
many concurrent serialized reads of large data files. Where "large" ranges from Gigabytes to Petabytes. But it only
supports a single writer. And random access to the datais not really possible in an efficient manner either. But thisis
why it is so performant and reliable. Reliable in part because this restriction allows for the data to be replicated across
the cluster reducing the chance of dataloss.

The execution layer relies on a"divide and conquer" strategy called MapReduce. MapReduce is beyond the scope of
this document, but suffice it to say, it can be so difficult to develop "real world" applications against that Cascading
was created to offset the complexity.

Apache Hadoop is an Open Source Apache project and isfreely available. It can be downloaded from here the Hadoop
website, http://hadoop.apache.org/core/.

CascadingV 1.2 Cascading - User Guide 2

http://hadoop.apache.org/core/

Counting words in adocument is the most common example presented to new Hadoop (and MapReduce) devel opers,
it is the Hadoop equivalent to the "Hello World" application.
Word counting is where a document is parsed into individual words, and the frequency of those words are counted.

For example, if we counted the last paragraph "is" would be counted twice, and "document" counted once.

In the code example below, we will use Cascading to read each line of text from afile (our document), parse it into
words, then count the number of time the word is encountered.

CascadingV 1.2 Cascading - User Guide 3

Diving In

/1 define source and si nk Taps.
Scheme sourceSchenme = new TextLine(new Fields("line"));
Tap source = new Hf s(sourceSchene, inputPath);

Schene si nkSchene = new TextLi ne(new Fields("word", "count"));
Tap sink = new Hf s(sinkSchenme, outputPath, SinkMdde. REPLACE);

/1 the 'head'" of the pipe assenbly
Pi pe assenbly = new Pi pe("wordcount");

/1 For each input Tuple

/1 parse out each word into a new Tuple with the field nane "word"

/1 regul ar expressions are optional in Cascading

String regex = "(?2<!\\pL) (?=\\pL) [~]*(?<=\\pL) (?!'\\pL)";

Function function = new RegexGenerator(new Fields("word"), regex);
assenbly = new Each(assenbly, new Fields("line"), function);

/1 group the Tuple stream by the "word" val ue
assenbly = new G oupBy(assenbly, new Fields("word"));

/1 For every Tuple group

/1 count the nunmber of occurrences of "word" and store result in
/l a field named "count"”

Aggr egat or count = new Count(new Fields("count"));

assenbly = new Every(assenbly, count);

/1 initialize app properties, tell Hadoop which jar file to use
Properties properties = new Properties();
Fl owConnect or . set Appl i cati onJar Cl ass(properties, Miin.class);

/1 plan a new Flow fromthe assenbly using the source and si nk Taps

/1 with the above properties

Fl onConnect or fl owConnector = new Fl owConnector(properties);

Fl ow fl ow = fl owConnect or.connect("word-count”, source, sink, assenbly);

/1 execute the flow, block until conplete
flow conpl ete();

Example 2.1 Word Counting
There are a couple things to take away from this example.

First, the pipe assembly is not coupled to the data (the Tap instances) until the last moment before execution. That
is, file paths or references are not embedded in the pipe assembly. The pipe assembly remains independent of which
data it processes until execution. The only dependency is what the data looks like, its "scheme”, or the field names
that make it up.

CascadingV 1.2 Cascading - User Guide 4

Diving In

That brings up fields. Every input and output file has field names associated with it, and every processing element of
the pipe assembly either expects certain fields, or creates new fields. This allows the developer to self document their
code, and allows the Cascading planner to "fail fast" during planning if adependency between elementsisn't satisfied
(used amissing or wrong field name).

It is aso important to point out that pipe assemblies are assembled through constructor chaining. This may seem odd
but is done for two reasons. It keeps the code more concise. And it prevents developers from creating "cycles' in
the resulting pipe assembly. Pipe assemblies are Directed Acyclic Graphs (or DAGs). The Cascading planner cannot
handle processes that feed themselves, that have cycles (not to say there are ways around this that are much safer).

Notice the very first Pi pe instance has a name. That instance is the "head" of this particular pipe assembly. Pipe
assemblies can have any number of heads, and any number of tails. This example does not name the tail assembly, but
for complex assemblies, tails must be named for reasons described below.

Heads and tails of pipe assemblies generally need names, this is how sources and sinks are "bound” to them during
planning. In our example above, there is only one head and one tail, and subsequently only one source and one
sink, respectively. So naming in this case is optiona, it's obvious what goes where. Naming is also useful for self
documenting pipe assemblies, especially where there are splits, joins, and merges in the assembly.

To paraphrase, our example will:
« read each line of text from afile and give it the field name "line",

» parse each "line" into words by the RegexGener at or object which in turn returns each word in the field named
"WOI’d",

 groups on the field named "word" using the G- oupBy object,

» then countsthe number of elementsin each grouping using the Count () object and storesthisvauein the"count"
field,

« finally the "word" and "count" fields are written out.

CascadingV 1.2 Cascading - User Guide 5

3. Data Processing

3.1 Introduction

The Cascading processing model is based on a "pipes and filters" metaphor. The developer uses the Cascading API
to assemble pipelines that split, merge, group, or join streams of data while applying operations to each data record
or groups of records.

In Cascading, we call adatarecord a Tuple, apipeline a pipe assembly, and a series of Tuples passing through a pipe
assembly is called a tuple stream.

Pipe assemblies are assembled independently from what data they will process. Before a pipe assembly can be
executed, it must be bound to data sources and data sinks, called Taps. The process of binding pipe assemblies to
sources and sinks results in a Flow. Flows can be executed on a data cluster like Hadoop.

Finally, many Flows can be grouped together and executed as a single process. If one Flow depends on the output of

another Flow, it will not be executed until all its data dependencies are satisfied. This collection of Flows is called
a Cascade.

3.2 Pipe Assemblies

Pipe assemblies define what work should be done against a tuple stream, where during runtime tuple streams are read
from Tap sources and are written to Tap sinks. Pipe assemblies may have multiple sources and multiple sinks and they
can define splits, merges, and joins to manipulate how the tuple streams interact.

Sub
GroupBy @

There are only five Pipe types: Pipe, Each, GroupBy, CoGroup, Every, and SubAssembly.

Pipe
Thecascadi ng. pi pe. Pi pe classisused to name branches of pipe assemblies. These names are used during
planning to bind Taps as either sources or sinks (or as traps, an advanced topic). It is also the base class for all
other pipes described below.

Each
The cascadi ng. pi pe. Each pipe applies a Functi on or Fi | t er Operation to each Tuple that passes
through it.

CascadingV 1.2 Cascading - User Guide 6

Data Processing

GroupBy
cascadi ng. pi pe. G oupBy manages one input Tuple stream and does exactly as it sounds, that is, groups
the stream on selected fieldsin the tuple stream. G- oupBy aso allowsfor "merging" of two or more tuple stream
that share the same field names.

CoGroup
cascadi ng. pi pe. CoG oup alowsfor "joins' on a common set of values, just like a SQL join. The output
tuple stream of CoGr oup isthejoined input tuple streams, where ajoin can be an Inner, Outer, Left, or Right join.

Every
The cascadi ng. pi pe. Every pipe applies an Aggr egat or (like count, or sum) or Buf f er (a dliding
window) Operation to every group of Tuples that pass through it.

SubAssembly
Thecascadi ng. pi pe. SubAssenbl y pipe allows for nesting reusabl e pipe assembliesinto a Pipe class for
inclusionin alarger pipe assembly. See the section onSubA ssemblies.

Assembling Pipe Assemblies

Pipe assemblies are created by chaining cascadi ng. pi pe. Pi pe classesand Pi pe subclassestogether. Chaining
is accomplished by passing previous Pi pe instances to the constructor of the next Pi pe instance.

/1 the "left hand side" assenbly head
Pi pe I hs = new Pipe("lhs");

| hs
| hs

new Each(| hs, new SonmeFunction());
new Each(| hs, new SomeFilter());

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SoneFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|Ihs, rhs);

join = new Every(join, new SomeAggregator());

new G oupBy(join);

join

join new Every(join, new SoneAggregator());

/[l the tail of the assenbly
join = new Each(join, new SoneFunction());

Example 3.1 Chaining Pipes

The above example, if visualized, would ook like the diagram below.

CascadingV 1.2 Cascading - User Guide 7

Data Processing

'P i pPAssembly

eeeeee
cre :

Here are some common stream patterns.

Split
A split takes a single stream and sends it down one or more paths. This is simply achieved by passing a given
Pi pe instance to two or more subsequent Pi pe instances. Note you can usethe Pi pe class and namethe branch
(branch names are useful for bindingFailure Traps), or with aEach class.

Merge
A merge iswhere two or more streams with the exact same Fields (and types) are treated as a single stream. This
is achieved by passing two or more Pi pe instancesto aGr oupBy Pi pe instance.

Join
A join is where two or more streams are connected by one or more common values. See the previous diagram
for an example.

Besides defining the paths tuple streams take through splits, merges, grouping, and joining, pipe assemblies also
transform and/or filter the stored values in each Tuple. Thisis accomplished by applying an Operation to each Tuple
or group of Tuples as the tuple stream passes through the pipe assembly. To do that, the valuesin the Tuple typically
aregiven field names, in the same fashion columns are named in a database so that they may be referenced or selected.

Operation
Operations (cascadi ng. oper ati on. Oper ati on) accept an input argument Tuple, and output zero or
more result Tuples. There are a few sub-types of operations defined below. Cascading has a number of generic
Operations that can be reused, or devel opers can create their own custom Operations.

Tuple
In Cascading, we call each record of dataa Tuple (cascadi ng. t upl e. Tupl e), and aseries of Tuplesare a
tuple stream. Think of a Tuple as an Array of values where each value can be any j ava. | ang. Obj ect Java
type (or byt e[] array). See the section on Custom Types for supporting non-primitive values.

Fields
Fields(cascadi ng. t upl e. Fi el ds) either declarethefield namesinaTuple. Or referencevaluesinaTuple
as a selector. Fields can either be string names ("first_name"), integer positions (- 1 for the last value), or a
substitution (Fi el ds. ALL to select all valuesin the Tuple, like an asterisk (*) in SQL, seeField Algebra).

Each and Every Pipes

The Each and Ever y pipetypes are the only pipes that can be used to apply Operations to the tuple stream.

CascadingV 1.2 Cascading - User Guide 8

Data Processing

The Each pipe applies an Operation to "each" Tuple asit passes through the pipe assembly. The Ever y pipe applies
an Operation to "every" group of Tuples as they pass through the pipe assembly, on the tail end of a Gr oupBy or
CoG oup pipe.

new Each(previ ousPi pe, argunentSel ector, operation, outputSelector)

new Every(previousPi pe, argunentSel ector, operation, outputSelector)

Both the Each and Ever y pipe take a Pipe instance, an argument selector, Operation instance, and a output selector
on the constructor. Where each selector is a Fields instance.

The Each pipe may only apply Funct i ons and Fi | t er s to the tuple stream as these operations may only operate
on one Tuple at atime.

The Every pipe may only apply Aggr egat or s and Buf f er s to the tuple stream as these operations may only
operate on groups of tuples, one grouping at atime.

input output b
v v '

(1'_ _____ v 7" \\
argument declared | input ®declared |
Fields Fields i\ Fields >’ Fields /j
\Y
argument argument result (i~ i_n;);t_‘vpr_e;u_lt_ ™) output
! [} .
[Selector} [Tuple } ¥ Operation TupIe & Tuple ?\) Tuple /J

| o o o o = a

The "argument selector” selects values from the input Tuple to be passed to the Operation as argument values. Most
Operations declare result fields, "declared fields' in the diagram. The "output selector" selects the output Tuple from
an "appended” version of the input Tuple and the Operation result Tuple. This new output Tuple becomes the input
Tupleto the next pipe in the pipe assembly.

Note that if aFunct i on or Aggr egat or emits more than one Tuple, this process will be repeated for each result
Tuple against the original input Tuple, depending on the output selector, input Tuple values could be duplicated across
each output Tuple.

CascadingV 1.2 Cascading - User Guide 9

Data Processing

input output b

v v v

Tuple

P e e e e ST
l

| Pipe .
T (N P NI
| default: y value declared | default:)
I\Fields.ALL/I I Fields @ Fields ! I\Flelds.RESULTil
—_————— S N oo N__ - _ S

V '
e s \
argument i value) result [_ output
Selector \ Tuple X Tuple | Selector
N A o ,
|

S Y

If the argument selector is not given, the whole input Tuple (Fi el ds. ALL) is passed to the Operation as
argument values. If the result selector is not given on an Each pipe, the Operation results are returned by default
(Fi el ds. RESULTS), replacing the input Tuple valuesin the tuple stream. Thisreally only appliesto Funct i ons,
asFi |l t ers either discard the input Tuple, or return the input Tuple intact. There is no opportunity to provide an

output selector.
input output 2

V V
input output
""-_‘_.___'_"_l
| Pipe .
r-T o= (————— ~ ———— ==) — - - - =
" default) ! group X declared) [default:)
\flfliiS.A_L_L/l | Fields > Fields) | Fields.ALL)

: V '
argument C'_g;r(_)l;p_\v’_r_e;u_lt_‘\\ ou?:)ut
] L
| \o—-——-—-" ————--- v
I

For the Ever y pipe, the Aggregator results are appended to the input Tuple (Fi el ds. ALL) by default.

Itisimportant to note that the Ever y pipe associates Aggregator results with the current group Tuple. For example, if
you are grouping on thefield " department” and counting the number of "names" grouped by that department, the output

Fields would be ["department”,"num_employees']. Thisistrue for both Aggr egat or , seen above, and Buf f er .

If you were also adding up the salaries associated with each "name" in each "department”, the output Fields would

be ["department”,"num_employees’,"total_salaries']. Thisis only true for chains of Aggr egat or Operations, you
may not chain Buf f er Operations.

CascadingV 1.2 Cascading - User Guide 10

Data Processing

input output E
:‘ FIEIdS .

LY
input
.----_—‘—’——~——I
' Pipe !
A (—————~,—————~ ST \
: .default: \I |I group éde(ﬂared\l | _default: |
\FieldsALL) L\ Fields >/ Fields)) Sy
. \ '
Y ((—=-=-= v T) v
argument 1 value @ result L output
Selector é Tuple X Tuple ’) Selector

—— e, — e —— e ——

For the Every pipe when used with a Buf f er the behavior is dightly different. Instead of associating the Buffer
results with the current grouing Tuple, they are associated with the current values Tuple, just like an Each pipe does
withaFunct i on. This might be slightly more confusing, but provides much more flexibility.

GroupBy and CoGroup Pipes

The Gr oupBy and CoG oup pipes serve two roles. First, they emit sorted grouped tuple streams allowing for
Operations to be applied to sets of related Tuple instances. Where "sorted" means the tuple groups are emitted from
the G oupBy and CoGr oup pipesin sort order of the field values the groups were grouped on.

Second, they allow for two streamsto be either merged or joined. Where merging alowsfor two or more tuple streams
originating from different sources to be treated as a single stream. And joining alows two or more streams to be
"joined" (in the SQL sense) on acommon key or set of Tuple valuesin aTuple.

It is not required that an Ever y follow either G- oupBy or CoGroup, an Each may follow immediately after. But
an Ever y many not follow an Each.

It isimportant to note, for both G- oupBy andCoGr oup, the values being grouped on must be the same type. If your
application attemptsto G oupBy onthefield "size", but the value alternatesbetweena St r i ng and aLong, Hadoop
will fail internally attempting to apply a Java Conpar at or to them. This also holds true for the secondary sorting
sort-by fieldsin G- oupBy.

Gr oupBYy accepts one or more tuple streams. If two or more, they must all have the same field names (thisis also
called amerge, see below).

Pi pe groupBy = new GroupBy(assenbly, new Fields("groupl", "group2"));

Example 3.2 Grouping a Tuple Stream

The example above simply creates a new tuple stream where Tuples with the same values in "groupl" and "group2"
can be processed as a set by an Aggr egat or or Buf f er Operation. The resulting stream of tuples will be sorted
by the valuesin "groupl" and "group2".

CascadingV 1.2 Cascading - User Guide 11

Data Processing

Pi pe[] pipes = Pipe.pipes(Ihs, rhs);
Pi pe nerge = new G oupBy(pipes, new Fields("groupl", "group2"));
Example 3.3 Merging a Tuple Sream

This example merges two streams ("lhs' and "rhs") into one tuple stream and groups the resulting stream on the fields
"groupl" and "group2", in the same fashion as the previous example.

CoGroup accepts two or more tuple streams and does not require any common field names. The grouping fields must
be provided for each tuple stream.

Fields | hsFields = new Fields("fieldA", "fieldB");
Fields rhsFields = new Fields("fieldC', "fieldD");
Pipe join = new CoGoup(| hs, I hsFields, rhs, rhsFields, new |InnerJoin());

Example 3.4 Joining a Tuple Sream

This example joins two streams ("lhs' and "rhs") on common values. Note that common field names are not required
here. Actually, if there were any common field names, the Cascading planner would throw an error as duplicate field
names are not allowed.

Thisis significant because of the nature of joining streams.

Thefirst stage of joining hasto do with identifying field names that represent the grouping key for agiven stream. The
second stage is emitting a new Tuple with the joined values, this includes the grouping values, and the other values.

[“url" I "word" I "count"] [“url" I"sentence'I "count"]

\J
["url" I "word" I "count" I "url" I‘sentence‘I "count"]

In the above example, we seewhat "logically" happens during ajoin. Here wejoin two streamson the "url” field which
happensto be common to both streams. Theresult issimply two Tupleinstances with the same"url" appended together
into anew Tuple. In practice thiswould fail since the result Tuple has duplicate field names. The CoGr oup pipe has
thedecl ar edFi el ds argument allowing the developer to declare new unique field names for the resulting tuple.

Fiel ds commbn = new Fields("url");
Fiel ds declared = new Fields("url1l", "word", "wd_count", "url2", "sentence", "snt_count
Pi pe join = new CoGoup(| hs, common, rhs, common, declared, new InnerJoin());

Example 3.5 Joining a Tuple Sream with Duplicate Fields

CascadingV 1.2 Cascading - User Guide 12

Data Processing

["url" I "word" I "count"] [“url" I"sentence'I "count"]

\Y
["urll" I "word" I‘Wd_count"I "url2" I‘sentence‘I‘snt_count"]

Here we see an example of what the devel oper could have named the fields so the planner would not fail.

Itisimportant to note that Cascading could just magically create anew Tuple by removing the duplicate grouping fields
names so the user isn't left renaming them. In the above example, the duplicate "url" columns could be collapsed into
one, asthey arethe same value. Thisisnot done because field namesare auser convenience, the primary mechanismto
mani pulate Tuplesisthrough positions, not field names. So the result of every Pipe (Each, Every, CoGroup, GroupBY)
needs to be deterministic. This gives Cascading a big performance boost, provides a means for sub-assemblies to
be built without coupling to any "domain level" concepts (like "first_name", or "url), and allows for higher level
abstractions to be built on-top of Cascading simply.

In the example above, we explicitly set a Joiner class to join our data. The reason CoG oup is named "CoGroup"
and not "Join" is because joining datais done after all the parallel streams are co-grouped by their common keys. The
details are not terribly important, but note that a "bag" of data for every input tuple stream must be created before an
join operation can be performed. Each bag consists of all the Tuple instances associated with a given grouping Tuple.

Ihs rhs

~

Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
"url" I "word" I "count" j "url" I"sentence"I "count" j

Above we see two bags, onefor each tuple stream ("Ihs"' and "rhs"). Each Tuplein bag isindependent but all Tuplesin
both bags have the same "url" value since we are grouping on "url", from the previous example. A Joiner will match
up every Tuple onthe "lhs' with aTuple onthe "rhs'. An InnerJoin is the most common. Thisiswhere each Tuple on
the "lhs" is matched with every Tuple on the "rhs". Thisisthe default behaviour one would see in SQL when doing a
join. If one of the bags was empty, no Tuples would be joined. An OuterJoin allows for either bag to be empty, and
if that isthe case, a Tuple full of nul | values would be substituted.

CascadingV 1.2 Cascading - User Guide 13

Data Processing

Above we see all supported Joiner types.

LHS = [0,a] [1,b] [2,c]
RHS = [0,A] [2,C [3,D

Using the above simple data sets, we will define each join type where the values are joined on the first position,
a numeric value. Note when Cascading joins Tuples, the resulting Tuple will contain all the incoming values. The
duplicate common key(s) is not discarded if given. And on outer joins, wherethereis no equivalent key in the alternate
stream, nul | values are used as placeholders.

InnerJoin
An Inner join will only return ajoined Tupleif neither bag hasis empty.

[0,a,0,A [2,c,2,(C

OuterJoin
An Outer join will join if either the left or right bag is empty.

[0,a,0,A [1,b,null,null] [2,c,2,C [null,null,3,D

LeftJoin
A Left join can also be stated as a Left Inner and Right Outer join, whereit isfineif the right bag is empty.

[0,a,0,A [1,b,null,null] [2,c,2,C

RightJoin
A Right join can aso be stated as a L eft Outer and Right Inner join, where it isfineif the left bag is empty.

[0,a,0,A [2,c,2,C [null,null,3,D

MixedJoin
A Mixed join is where 3 or more tuple streams are joined, and each pair must be joined differently. See the
cascadi ng. pi pe. cogr oup. M xedJoi n classfor more details.

CascadingV 1.2 Cascading - User Guide 14

Data Processing

Custom
A custom join is where the devel oper subclassesthe cascadi ng. pi pe. cogr oup. Joi ner class.

Sorting

By virtue of the Reduce method, in the MapReduce model encapsulated by Gr oupBy and CoGr oup, al groups of
Tuples will be locally sorted by their grouping values. That is, both the Aggr egat or and Buf f er Operations will
receive groupsin their natural sort order. But the values associated within those groups are not sorted.

That is, if we sort on 'lastname’ with thetuples[j ohn, doe] and[j ane, doe],the'firsthame valueswill arrive
in an arbitrary order to the Aggr egat or . aggr egat e() method.

In the below example we provide sorting fields to the Gr oupByY instance. Now val uel and val ue2 will arrivein
their natural sort order (assuming val uel andval ue2 arej ava. | ang. Conpar abl e).

Fi el ds groupFi el ds = new Fi el ds("groupl", "group2");
Fi el ds sortFields = new Fields("valuel", "value2");
Pi pe groupBy = new GroupBy(assenbly, groupFields, sortFields);

Example 3.6 Secondary Sorting
If we didn't care about the order ofval ue2, would could have left it out of thesor t Fi el ds Fi el ds constructor.

In this example, we reverse the order of val uel while keeping the natural order ofval ue2.

Fi el ds groupFi el ds = new Fields("groupl", "group2");
Fiel ds sortFields = new Fields("val uel", "value2");

sortFi el ds. set Conpar ator("val uel", Collections.reverseOder());

Pi pe groupBy = new G oupBy(assenbly, groupFields, sortFields);

Example 3.7 Reversing Secondary Sort Order

Whenever there is an implied sort, during grouping or secondary sorting, a custom j ava. uti | . Conpar at or
can be supplied to the grouping Fi el ds or secondary sort Fi el ds to influence the sorting through the
Fi el ds. set Conpar at or () cal.

Creating a custom Conpar at or aso allowsfor non- Conpar abl e classesto be sorted and/or grouped on.

Here is amore practical example were we group by the 'day of the year', but want to reverse the order of the Tuples
within that grouping by 'time of day'.

CascadingV 1.2 Cascading - User Guide 15

Data Processing

Fi el ds groupFields = new Fields("year", "nonth", "day");
Fields sortFields = new Fields("hour", "mnute", "second");

sort Fi el ds. set Conpar at or s(
Col I ections.reverseOrder (), /1 hour
Col I ections. reverseOrder (), /1 mnute
Col l ections.reverseOrder()); // second

Pi pe groupBy = new GroupBy(assenbly, groupFields, sortFields);

Example 3.8 Reverse Order by Time

3.3 Source and Sink Taps

All input data comes from, and all output datafeedsto, acascadi ng. t ap. Tap instance.

A Tap represents a resource like a data file on the local file system, on a Hadoop distributed file system, or even
on Amazon S3. Taps can be read from, which makes it a "source", or written to, which makes it a"sink". Or, more
commonly, Taps can act as both sinks and sources when shared between Flows.

All Tapsmust have a Scheme associated with them. If the Tapisabout wherethedatais, and how to get it, the Schemeis
about what the dataiis. Cascading providesthree Scheme classes, Text Li ne,Text Del i ni t ed, SequenceFi | e,
and Wit abl eSequenceFi | e.

TextLine
TextLine reads and writes raw text files and returns Tuples with two field names by default, "offset" and "line".
These vaues are inherited from Hadoop. When written to, al Tuple values are converted to Strings and joined
with the TAB character (\t).

TextDelimited
TextDelimited reads and writes character delimited files (csv, tsv, etc). When written to, all Tuple values are
converted to Strings and joined with the given character delimiter. This Scheme can optionally handle quoted
values with custom quote characters. Further, TextDelimited can coerce each value to a primitive type.

SequenceFile
SequenceFile is based on the Hadoop Sequence file, which is a binary format. When written or read from, all
Tuple values are saved in their native binary form. This is the most efficient file format, but being binary, the
result files can only be read by Hadoop applications.

WritableSequenceFile
WritableSequenceFileisbased on the Hadoop Sequencefile, likethe Sequencelile Scheme, except it was designed
to read and write key and/or value Hadoop W i t abl e objectsdirectly. Thisisvery useful if you have sequence
files created by other applications. During writing (sinking) specified key and/or value fields will be serialized
directly into the sequence file. During reading (sourcing) the key and/or value objects will be deserialized and
wrapped in a Cascading Tuple and passed to the downstream pipe assembly.

The fundamental difference behind Text Li ne and SequenceFi | e schemes is that tuples stored in the
SequenceFi | e remain tuples, so when read, they do not need to be parsed. So a typical Cascading application

CascadingV 1.2 Cascading - User Guide 16

Data Processing

will read raw text files, and parse each line into a Tupl e for processing. The fina Tuples are saved via the
SequenceFi | e schemeso future applications canjust read thefiledirectly into Tupl e instanceswithout the parsing

step.

It isadvised for performance reasons, sequence file compression be enabled viathe Hadoop properties. Either block or
record based compression can be enabled. See the Hadoop documentation for the avail able properties and compression
types available.

Tap tap = new Hf s(new TextLine(new Fields("line")), path);

Example 3.9 Creating a new Tap

The above example creates anew Hadoop FileSystem Tap that can read/write raw text files. Since only onefield name
was provided, the "offset” field is discarded, resulting in an input tuple stream with only "line" values.

Thethreemost common Tap classes used are, Hfs, Dfs, and Lfs. The Multi SourceTap, MultiSinkTap, and TemplateTap
are utility Taps.

Lfs
Thecascadi ng. t ap. Lf s Tap isused to reference local files. Local files are files on the same machine your
Cascading application is started. Even if a remote Hadoop cluster is configured, if aLfs Tap is used as either a
source or sink in a Flow, Cascading will be forced to run in "local mode" and not on the cluster. This is useful
when creating applicationsto read local files and import them into the Hadoop distributed file system.

Dfs
Thecascadi ng. t ap. Df s Tap isused to reference files on the Hadoop distributed file system.

Hfs
Thecascadi ng. t ap. Hf s Tap usesthe current Hadoop default file system. If Hadoop is configured for "local
mode" its default file system will be thelocal file system. If configured asacluster, the default file systemislikely
the Hadoop distributed file system. The Hfs is convenient when writing Cascading applications that may or may
not be run on a cluster. Lhs and Dfs subclass the Hfs Tap.

MultiSourceTap
Thecascadi ng. t ap. Mul ti Sour ceTap is used to tie multiple Tap instances into a single Tap for use as
an input source. The only restriction isthat al the Tap instances passed to a new MultiSourceTap share the same
Scheme classes (not necessarily the same Scheme instance).

MultiSinkTap
Thecascadi ng. t ap. Mul ti Si nkTap is used to tie multiple Tap instances into a single Tap for use as an
output sink. During runtime, for every Tuple output by the pipe assembly each child tap to the MultiSinkTap will
sink the Tuple.

TemplateTap
The cascadi ng. t ap. Tenpl at eTap is used to sink tuples into directory paths based on the values in the
Tuple. More can be read below inTemplate Taps.

GlobHfs
Thecascadi ng. t ap. A obHf s Tap accepts Hadoop style 'file globbing' expression patterns. This allows for
multiple paths to be used as a single source, where all paths match the given pattern.

CascadingV 1.2 Cascading - User Guide 17

Data Processing

Keep in mind Hadoop cannot source datafrom directorieswith nested sub-directories, and it cannot write to directories
that already exist. But you can simply point the Hf s Tap to adirectory of datafiles and they all will be used asinput,
no need to enumate each individual fileintoaMul t i Sour ceTap.

To get around existing directories, the Hadoop related Taps allow for aSi nkiMbde value to be set when constructed.
Tap tap = new Hf s(new TextLine(new Fields("line")), path, SinkMdde. REPLACE);

Example 3.10 Overwriting An Existing Resource
Here are all the modes available by the built-in Tap types.

Si nkMode. KEEP
Thisisthe default behavior. If the resource exists, attempting to write to it will fail.

Si nkMbde. REPLACE
This allows Cascading to delete the file immediately after the Flow is started.

Si nkMode. UPDATE
Allowsfor new Tap typesthat have the concept of update or append. For example, updating recordsin a database.
It is up to the Tap to decide how to implement its "update" semantics. When Cascading sees the update mode, it
knows not to attempt to delete the resource first or to not fail because it already exists.

3.4 Field Algebra

Ascan beseen above, theEach and Ever y Pi pe classes provideameansto mergeinput Tuplevalueswith Operation
result Tuple valuesto create afinal output Tuple, which are used asthe input to the next Pi pe instance. This merging
is created through a type of "field algebra’, and can get rather complicated when factoring in Fields sets, a kind of
wildcard for specifying certain field values.

Fields sets are constant values on the Fi el ds class and can be used in many places the Fi el ds classis expected.
They are:

Fields ALL
Thecascadi ng. t upl e. Fi el ds. ALL constantisa"wildcard" that representsall the current available fields.

FieldsRESULTS
Thecascadi ng. t upl e. Fi el ds. RESULTS constant set is used to represent the field names of the current
Operations return values. This Fields set may only be used as an output selector on a Pipe where it replacesin the
input Tuple with the Operation result Tuple in the stream.

Fields.REPLACE
The cascadi ng. t upl e. Fi el ds. REPLACE constant is used as an output selector to inline-replace values
in the incoming Tuple with the results of an Operation. This is a convenience Fields set that allows subsequent
Operations to 'step' on the value with a given field name. The current Operation must always use the exact same
field names, or the ARGS Fields set.

Fields.SWAP
The cascadi ng. t upl e. Fi el ds. SWAP constant is used as an output selector to swap out Operation
arguments with its results. Neither the argument and result field names or size need to be the same. Thisis useful

CascadingV 1.2 Cascading - User Guide 18

Data Processing

for when the Operation arguments are no longer necessary and the result Fields and values should be appended
to the remainder of the input field names and Tuple.

Fields ARGS
Thecascadi ng. t upl e. Fi el ds. ARGS constant isused to |et agiven Operation inherit thefield names of its
argument Tuple. This Fields set isaconvenience and is typically used when the Pipe output selector isRESULTS
or REPLACE. It isspecifically used by the Identity Function when coercing valuesfrom Stringsto primitive types.

Fields.GROUP
The cascadi ng. t upl e. Fi el ds. GROUP constant represents all the fields used as grouping values in a
previous Group. If there is no previous Group in the pipe assembly, the GROUP represents all the current field
names.

FieldsVALUES
Thecascadi ng. t upl e. Fi el ds. VALUES constant represent all the fields not used as grouping fieldsin a
previous Group.

Fields UNKNOWN
Thecascadi ng. t upl e. Fi el ds. UNKNOAN constant is used when Fields must be declared, but how many
and their names is unknown. This allows for arbitrarily length Tuples from an input source or some Operation.
Use this Fields set with caution.

Below isareference chart showing common waysto merge input and result fields for the desired output fields. Seethe
section on Each and Every Pipes for details on the different columns and their relationships to the Each and Every
Pipes and Functions, Aggregators, and Buffers.

CascadingV 1.2 Cascading - User Guide 19

Data Processing

Input Fields Argument Selector Declared Fields Result Fields Output Selector Output Fields Comments
------ ~ AR
)) ‘)
i o I e
I\ _____ ,Y I\ _____ /l
------ ~
))
. n
l\ _____ /l
PRESESISISEG T S N ——
))))
I o : n : At I n
‘\ _____ - | —— /'
CTTTTTY)
“time" : ALL ! “line" “time"
| —— /'
m
P S e e T e Py
[}))) ‘))))
AL ! 1 UNKNOWN ! | UNKNOWN! ! RESULTS | | UNKNOWN!
‘\ _____ /' ‘\ _____ /' N ” ‘\ _____ /' N ” 4
------------- ~ et Y et
[}) ‘) ‘ I) ‘)
voALL 1 UNKNOWN! | UNKNOWN! tOALL ! | UNKNOWN!
‘\ _____ ’ ‘\ _____ /' R — /I ‘\ _____ /' R /I
oo oo)
"time" |"status" "status" : ARGS ! "status" : RESULTS ! "status"
| —— - L —— /'
o Y o Y Output selédttow
nm@ @ : Ares : w : o : e cause aupieatetie !
oo . e - names.
------------- ~ pmmmm e
)) i 1}))
i At : i ARes) nm] n
‘\ _____ ’ ‘\ _____ /' ‘\ _____ /'
o Y AR Y AR Y Output seléttow
n o : : fres : nm : o : s cause dupicate fie |
RS . R - N - - names.
------ ~ P TN
))))
u@ i Ares I (FEPACE) nm
l\ _____ /l l\ _____ /l
------ ~
))
@m@ O @

3.5 Flows

When pipe assemblies are bound to source and sink Taps, a Fl ow s created. Flows are executable in the sense that
once created they can be "started" and will begin execution on a configured Hadoop cluster.

Think of a Flow as adata processing workflow that reads data from sources, processes the data as defined by the pipe
assembly, and writes data to the sinks. Input source data does not need to exist when the Flow is created, but it must

exist when the Flow is executed (unless executed as part of a Cascade, seeCascades).

The most common pattern isto create a Flow from an existing pipe assembly. But there are cases where aMapReduce
job has already been created and it makes sense to encapsulateit in aFlow class so that it may participate in a Cascade
and be scheduled with other Flow instances. Alternatively, viathe Riffle[http://github.com/cwensel /riffl€] annotations,
third party applications can participate in a Cascade, or complex algorithms that result in iterative Flow executions

can be encapsulated as asingle Flow. All patterns are covered here.

CascadingV 1.2

Cascading - User Guide

20

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

Creating Flows from Pipe Assemblies

Fl ow fl ow = new Fl onConnector().connect("flow nane", source, sink, pipe);

Example 3.11 Creating a new Flow

To create a Flow, it must be planned though the FlowConnector object. The connect () method is used to create
new Flow instances based on a set of sink Taps, source Taps, and a pipe assembly. The example aboveis quitetrivial.

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("lhs");

| hs
| hs

new Each(| hs, new SomeFunction());
new Each(| hs, new SomeFilter());

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SoneFunction());

/! joins the | hs and rhs
Pipe join = new CoG oup(|lhs, rhs);

join = new Every(join, new SonmeAggregator());
Pi pe groupBy = new GroupBy(join);
groupBy = new Every(groupBy, new SoneAggregator());

/1 the tail of the assenbly
groupBy = new Each(groupBy, new SoneFunction());

Tap | hsSource = new Hf s(new TextLine(), "lhs.txt");
Tap rhsSource = new Hf s(new TextLine(), "rhs.txt");

Tap sink = new Hf s(new TextLine(), "output");
Map<String, Tap> sources = new HashMap<String, Tap>();

sources. put("l hs", | hsSource);
sources. put("rhs", rhsSource);

Fl ow fl ow = new Fl owConnector (). connect("flow nane", sources, sink, groupBy);

Example 3.12 Binding Tapsin a Flow

CascadingV 1.2 Cascading - User Guide 21

Data Processing

The example above expands on our previous pipe assembly example by creating source and sink Taps and planning
a Flow. Note there are two branches in the pipe assembly, one named "lhs" and the other "rhs". Cascading uses those
names to bind the source Taps to the pipe assembly. A HashMap of names and taps must be passed to FlowConnector
in order to bind Tapsto branches.

Since there is only one tail, the "join" pipe, we don't need to bind the sink to a branch name. Nor do we need to pass
the heads of the assembly to the FlowConnector, it can determine the heads of the pipe assembly on the fly. When
creating more complex Flows with multiple heads and tails, all Taps will need to be explicitly named, and the proper
connect () method will need be called.

Configuring Flows

The FlowConnector constructor acceptsthej ava. uti | . Property object so that default Cascading and Hadoop
properties can be passed down through the planner to the Hadoop runtime. Subsequently any relevant Hadoop
hadoop- def aul t. xm properties may be added (mapred. map.tasks. specul ative. executi on,
mapr ed. reduce. t asks. specul ati ve. executi on, or mapred. chil d.java. opts would be very
common).

One property that must be set for production applications is the application Jar class or Jar path.
Properties properties = new Properties();
/1 pass in the class nane of your application
/1 this will find the parent jar at runtine

Fl owConnect or . set Appl i cati onJar Cl ass(properties, Miin.class);

/1 or pass in the path to the parent jar
Fl owConnect or . set Appl i cati onJar Pat h(properties, pathToJdar);

Fl owConnect or fl owConnector = new Fl owConnector(properties);

Example 3.13 Configuring the Application Jar
More information on packaging production applications can be found inExecuting Processes.

Note the pattern of using a static property Setter method
(cascadi ng. f| ow. Fl owConnect or. set Appl i cati onJar Pat h), other classes that can be used to set
propertiesarecascadi ng. f | ow. Mul ti MapReducePl anner and cascadi ng. f1 ow. Fl ow.

Since the FI owConnect or can be reused, any properties passed on the constructor will be handed to all the Flows
it is used to create. If Flows need to be created with different default properties, a new FlowConnector will need to
be instantiated with those properties.

Skipping Flows

When a Flow participates in a Cascade, the FI ow#i sSki p() method is consulted before calling Fl ow#tst art ()
on the flow. By default i sSki p() returnstrueif any of the sinks are stale in relation to the Flow sources. Where
staleisif they don't exist or the resources are older than the sources.

CascadingV 1.2 Cascading - User Guide 22

Data Processing

This behavior is pluggable through the cascadi ng. f | ow. FI owSki pSt r at egy interface. A new strategy can
be set on aFl owinstance after its created.

FlowSkiplfSinkStale
Thecascadi ng. f | ow. FI owSki pl f Si nkSt al e strategy isthedefault strategy. Sinksarestaleif they don't
exist or the resources are older than the sources. If the SinkMaode for the sink Tap is REPLACE, then the Tap
will be treated as stale.

FlowSkiplfSinkExists
The cascadi ng. f | ow. Fl owSki pl f Si nkExi st s strategy will skip a Flow if the sink Tap exists,
regardless of age. If the Si nkMbde for the sink Tap is REPLACE, then the Tap will be treated as stale.

Note FI ow#tst art () and Fl ow#conpl et e() will not consult the i sSki p() method and subsequently will
alwaystry to start the Flow if called. Itisupto user codeto call i sSki p() todecideif the current strategy suggests
the Flow should be skipped.

Creating Flows from a JobConf

If a MapReduce job aready exists and needs to be managed by a Cascade, then the
cascadi ng. f| ow. MapReduceF| owclass should be used. After creating aHadoop JobConf instance, just pass
it into the MapReduceFI ow constructor. The resulting FI ow instance can be used like any other Flow.

Creating Custom Flows

Any custom Class can be treated as a Flow if given the correct Riffle [http://github.com/cwensel/riffle] annotations.
Riffle is an Apache licensed set of Java Annotations that identify specific methods on a Class as providing specific
life-cycle and dependency functionality. See the Riffle documentation and examples. To use with Cascading, a Riffle
annotated instance must be passed to the cascadi ng. f | ow. Fl owPr ocess constructor method. The resulting
FlowProcess instance can be used like any other Flow instance.

Since many agorithms need to have multiple passes over a given data set, a Riffle annotated Class can be written that
internally creates Cascading Flows and executes them until no more passes are needed. This is like nesting a Flows
and Cascades in a parent Flow which in turn can participate in a Cascade.

3.6 Cascades

A Cascade alows multiple Flow instances to be executed as a single logical unit. If there are dependencies between
the Flows, they will be executed in the correct order. Further, Cascades act like ant build or Unix "make" files. When
run, a Cascade will only execute Flows that have stale sinks (output data that is older than the input data), by default.

CascadeConnect or connector = new CascadeConnector();
Cascade cascade = connector.connect(flowFirst, flowSecond, flowThird);

Example 3.14 Creating a new Cascade

When passing Flows to the CascadeConnector, order is not important. The CascadeConnector will automatically
determine what the dependencies are between the given Flows and create a scheduler that will start each flow asits

CascadingV 1.2 Cascading - User Guide 23

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

data sources become available. If two or more Flow instances have no dependencies, they will be submitted together
so they can execute in parallel.

For more information, see the section onTopologica Scheduling.

If an instance of cascadi ng. fl ow. Fl owSki pStrat egy is given to an Cascade instance via the
Cascade#set Fl owSki pSt rat egy() method, it will be consulted for every Flow instance managed by the
Cascade, all skip strategies on the Flow instanceswill beignored. For moreinformation on skip strategies, seeSkipping
Flows.

CascadingV 1.2 Cascading - User Guide 24

4. Executing Processes

4.1 Introduction

Cascading requires Hadoop to beinstalled and correctly configured. Apache Hadoop isan Open Source Apache project
and is freely available. It can be downloaded from the Hadoop website,http://hadoop.apache.org/core/.

4.2 Building

Cascading ships with a handful of jars.

cascading-1.2.x.jar
all relevant Cascading class files and libraries, with a Hadoop friendly | i b folder containing al third-party
dependencies

cascading-core-1.2.x jar
all Cascading Core classfiles, should be packaged with I i b/ *. j ar

cascading-xml-1.2.x.jar
all Cascading XML module classfiles, should be packaged with | i b/ xmi / *. j ar

cascading-test-1.2.x.jar
al Cascading unit tests. If writing custom modules for cascading, sub-classing
cascadi ng. Cascadi ngTest Case might be helpful

Cascading will run with Hadoop in its default ‘local' or 'stand alone' mode, or configured as a distributed cluster.

When used on a cluster, a Hadoop job Jar must be created with Cascading jars and dependent thrid-party jars in the
jobjarli b directory, per the Hadoop documentation.

CascadingV 1.2 Cascading - User Guide 25

http://hadoop.apache.org/core/

Executing Processes

<l-- Conmon ant build properties, included here for conpl eteness -->
<property name="build.dir" |ocation="${basedir}/build"/>
<property name="buil d. cl asses" location="${build.dir}/classes"/>

<l-- Cascading specific properties -->
<property name="cascadi ng. home" | ocati on="${basedir}/../cascadi ng"/>
<property file="${cascadi ng. hone}/version. properties"/>
<property nane="cascadi ng. rel ease. versi on" val ue="x.y.z"/>
<property nane="cascadi ng. fil enanme. core"

val ue="cascadi ng- cor e- ${ cascadi ng. rel ease. version}.jar"/>
<property nane="cascadi ng.fil ename. xnm "

val ue="cascadi ng- xm - ${ cascadi ng. rel ease. version}.jar"/>
<property name="cascadi ng.|ibs" val ue="${cascadi ng. hone}/lib"/>
<property name="cascadi ng. | i bs.core" val ue="${cascading.libs}"/>
<property nanme="cascading.libs.xm " val ue="${cascading.!libs}/xm"/>

<condi ti on property="cascadi ng. pat h" val ue="${cascadi ng. hone}/"
el se="${cascadi ng. hone}/ bui | d">
<avail abl e fil e="${cascadi ng. hone}/ ${cascadi ng. fil enane. core}"/>
</conditi on>

<property nane="cascadi ng.lib. core"

val ue="${cascadi ng. pat h}/ ${cascadi ng. fi | enanme. core}"/>
<property nane="cascadi ng.!lib.xn"

val ue="%{ cascadi ng. pat h}/ ${ cascadi ng. fi |l ename. xm }"/ >

Example 4.1 Sample Ant Build - Properties

CascadingV 1.2 Cascading - User Guide

Executing Processes

<l--
A sanple target to jar project classes and Cascadi ng

libraries into a single Hadoop conpatible jar file.
co S

<target name="jar" description="creates a Hadoop ready jar w dependencies">

<l-- copy Cascading classes and libraries -->
<copy todir="${build.classes}/lib" file="${cascading.lib.core}"/>
<copy todir="%{build.classes}/lib" file="%${cascading.lib.xm}"/>
<copy todir="${build.classes}/lib">
<fileset dir="${cascading.libs.core}" includes="*.jar"/>
<fileset dir="${cascading.libs.xm}" includes="*.jar"/>
</ copy>

<jar jarfile="${build.dir}/${ant.project.nane}.jar">
<fileset dir="${build.classes}"/>

<fileset dir="${basedir}" includes="1ib/"/>
<mani f est >
<l-- the project Miin class, by default assumes Main -->

<attribute nanme="Main-d ass" val ue="${ant. proj ect. nane}/ Min"/>
</ mani f est >
</jar>

</target>

Example 4.2 Sample Ant Build - Target

The above Ant snippets can be used in your project to create a Hadoop jar for submission on your cluster. Again,
all Hadoop applications that are intended to be run in a cluster must be packaged with all third-party librariesin a
directory named | i b in the final application Jar file, regardless if they are Cascading applications or raw Hadoop
M apReduce applications.

Note, the snippets above is only intended to show how to include Cascading libraries, you still need to compile your
project into the build.classes path.

4.3 Configuring

During runtime, Hadoop must be "told" which application jar file should be pushed to the cluster. Typicaly thisis
done viathe Hadoop API JobConf object.

Cascading offers a shorthand for configuring this parameter.

Properties properties = new Properties();

/1 pass in the class name of your application

CascadingV 1.2 Cascading - User Guide 27

Executing Processes

/1 this will find the parent jar at runtine
Fl owConnect or. set Appl i cati onJarCl ass(properties, Miin.class);

/1 or pass in the path to the parent jar
Fl owConnect or. set Appl i cati onJar Pat h(properties, pathToJdar);

Fl onConnect or fl owConnector = new Fl owConnector(properties);

Above we see how to set the same property two ways. First viathe set Appl i cati onJar O ass() method, and
viatheset Appl i cati onJar Pat h() method. The first method takes a Class object that owns the 'main’ function
for this application. The assumption here isthat Mai n. cl ass isnot located in a Java Jar that is stored inthel i b
folder of the application Jar. If it is, that Jar will be pushed to the cluster, not the parent application jar.

Inyour application, only one of these methods needs to be called, but one of them must be called to properly configure
Hadoop.

4.4 Executing

Running a Cascading application is exactly the same as running any Hadoop application. After packaging your
application into a single jar (seeBuilding Cascading Applications), you must use bi n/ hadoop to submit the
application to the cluster.

For example, to execute an application stuffed into your - appl i cat i on. j ar, call the Hadoop shell script:

$HADOOP_HOVE/ bi n/ hadoop j ar your-application.jar [some parans]

Example 4.3 Running a Cascading Application

If the configuration scripts in $SHADOOP_CONF_DI R are configured to use a cluster, the Jar will be pushed into the
cluster for execution.

Cascading does not rely on any environment variables like $HADOOP_HOVE or$HADOOP_CONF_DI R, only bi n/
hadoop does.

It should be noted that eventhoughyour - appl i cati on. j ar ispassed onthecommandlinetobi n/ hadoop this
in no way configures Hadoop to push thisjar into the cluster. Y ou must still call one of the property setters mentioned
above to set the proper path to the application jar. If misconfigured, likely one of the interna libraries (found in the
lib folder) will be pushed to the cluster instead and O assNot FoundExcept i onswill be thrown.

CascadingV 1.2 Cascading - User Guide 28

5. Using and Developing Operations

5.1 Introduction

To use Cascading, it is hot strictly necessary to create custom Operations. There are a number of Operations in the
Cascading library that can be combined into very robust applications. In the same way you can chain sed, grep, sort,
uniq, awk, etc in Unix, you can chain existing Cascading operations. But developing customs Operations is very
simplein Cascading.

There are four kinds of Operations. Functi on,Fi | t er, Aggr egat or, and Buf f er.

Operation

Aggregator

All Operations operate on an input argument Tuple and all Operations other than Fi | t er may return zero or more
Tuple object results. That is, aFunct i on can parse astring and return anew Tuple for every value parsed out (one
Tuple for each 'word'), or it may create asingle Tuple with every parsed value as an element in the Tuple object (one
Tuple with "first-name" and "last-name" fields).

In practice, a Funct i on that returnsno resultsisaFi | t er, but the Fi | t er type has been optimized and can be
combined with "logical” filter Operations like Not , And, O, etc.

During runtime, Operations actually receive arguments as an instance of the TupleEntry object. The TupleEntry object
holds both an instance of Fi el ds and the current Tupl e the Fi el ds object definesfields for.

All Operations, other thanFi | t er , must declareresult Fields. For example, if aFunct i on waswritten to parsewords
out of aString and return anew Tuplefor eachword, thisFunct i on must declarethat it intendsto return a Tuplewith
onefield named "word". If the Funct i on mistakenly returns more valuesin the Tuple other than a'word', the process
will fail. Operations that do return arbitrary numbers of valuesin aresult Tuple may declare Fi el ds. UNKNOWN.

The Cascading planner always attemptsto "fail fast" where possible by checking the field name dependencies between
Pipes and Operations, but some cases the planner can't account for.

All Operations must be wrapped by either an Each or an Ever y pipe instance. The pipe is responsible for passing
in an argument Tuple and accepting the result Tuple.

Operations, by default, are "safe". Safe Operations can execute safely multiple times on the same Tuple multiple
times, that is, it has no side-effects, it isidempotent. If an Operation is not idempotent, the method i sSaf e() must
returnf al se. Thisvalue influences how the Cascading planner renders the Flow under certain circumstances.

CascadingV 1.2 Cascading - User Guide 29

Using and Developing Operations

5.2 Functions

A Funct i on expects asingle argument Tupl e, and may return zero or more result Tuples.
A Funct i on may only be used with a Each pipe which may follow any other pipe type.

TocreateacustomFunct i on, subclasstheclasscascadi ng. oper at i on. BaseOper at i on andimplement the
interfacecascadi ng. oper at i on. Functi on. Because BaseQper at i on has been subclassed, the oper at e
method, as defined onthe Funct i on interface, isthe only method that must be implemented.

public class SoneFunction extends BaseOperation inplenments Function

{

public void operate(FlowProcess flowProcess, FunctionCall functionCall)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunents = functionCall.get Argunents();

// create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/1 insert some values into the result Tuple

/1 return the result Tuple
functionCall.getQutputCollector().add(result);

}

Example 5.1 Custom Function

Functions should declare both the number of argument values they expect, and the field names of the Tuple they will
return.

Functions must accept 1 or more values in a Tuple as arguments, by default they will accept any number
(Oper at i on. ANY) of values. Cascading will verify that the number of arguments selected match the number of
arguments expected during the planning phase.

Functions may optionally declare the field names they return, by default Funct i ons declare Fi el ds. UNKNOAN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by
accepting the values from the user via a constructor implementation.

CascadingV 1.2 Cascading - User Guide 30

Using and Developing Operations

public class AddVal uesFuncti on extends BaseQperation inplenments Function

{
publ i ¢ AddVal uesFuncti on()

{

/1 expects 2 argunents, fail otherw se
super(2, new Fields("sunt));

}

publ i c AddVal uesFunction(Fields fieldDeclaration)
{

/1l expects 2 argunents, fail otherw se
super(2, fieldDeclaration);

}

public void operate(FlowProcess fl owProcess, FunctionCall functionCall)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunments = functionCall.get Argunents();

[/l create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/!l sumthe two argunents
int sum = argunments.getinteger(0) + argunents.getlnteger(1);

/! add the sumvalue to the result Tuple
result.add(sum);

/1 return the result Tuple
functionCall . getQutputCollector().add(result);

}

Example 5.2 Add Values Function

The example above implements a fully functional Funct i on that accepts two values in the argument Tuple, adds
them together, and returns the result in anew Tuple.

The first constructor assumes a default field name this function will return, but it is a best practice to aways give
the user the option to override the declared field names to prevent any field name collisions that would cause the
planner to fail.

5.3 Filter

A Fi | t er expectsasingle argument Tuple and returns a boolean value stating whether or not the current Tuple in
the tuple stream should be discarded.

CascadingV 1.2 Cascading - User Guide 31

Using and Developing Operations

A Fi | t er may only be used with aEach pipe, and it may follow any other pipe type.

To create a customFi | t er, subclass the class cascadi ng. oper ati on. BaseOper at i on and implement the
interfacecascadi ng. oper ati on. Fi | t er. Because BaseQOper at i on has been subclassed, the i sRenove
method, as defined onthe Fi | t er interface, isthe only method that must be implemented.

public class SoneFilter extends BaseOperation inplenments Filter

{

publ i c bool ean i sRenove(Fl owProcess flowProcess, FilterCall filterCall)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunments = filterCall.get Argunments();

// initialize the return result
bool ean i sRenbve = fal se;

/1 test the argunent values and set isRenove accordingly

return i sRenove;

}

Example 5.3 Custom Filter
Filters should declare the number of argument values they expect.

Filters must accept 1 or more values in a Tuple as arguments, by default they will accept any number
(Oper ati on. ANY) of values. Cascading will verify the number of arguments selected match the number of
arguments expected.

The number of arguments declarations must be done on the constructor, either by passing adefault valuetothesuper
constructor, or by accepting the value from the user via a constructor implementation.

CascadingV 1.2 Cascading - User Guide 32

Using and Developing Operations

public class StringlLengthFilter extends BaseOperation inplenents Filter

{
public StringLengthFilter()
{
/1 expects 2 argunents, fail otherw se
super(2);
}

publ i c bool ean i sRenove(Fl owProcess flowProcess, FilterCall filterCall)
{
/1 get the argunments Tupl eEntry
Tupl eEntry argunments = filterCall.get Argunments();

/[l filter out the current Tuple if the first argunent length is greater
/1 than the second argunment integer value
return argunents.getString(0).length() > argunents.getlnteger(1);

}

Example 5.4 Sring Length Filter

The example aboveimplementsafully functional Fi | t er that acceptstwo argumentsand filters out the current Tuple
if the first argument String length is greater than the integer value of the second argument.

5.4 Aggregator

An Aggr egat or expects set of argument Tuples in the same grouping, and may return zero or more result Tuples.

An Aggr egat or may only be used with an Ever y pipe, and it may only follow aG oupBy,CoGr oup, or another
Every pipetype.

TocreateacustomAggr egat or , subclasstheclasscascadi ng. oper at i on. BaseQper at i on and implement
the interfacecascadi ng. oper ati on. Aggr egat or. Because BaseQperati on has been subclassed,
thest art , aggr egat e, and conpl et e methods, as defined on the Aggr egat or interface, are the only methods
that must be implemented.

CascadingV 1.2 Cascading - User Guide 33

Using and Developing Operations

public class SoneAggregat or extends BaseQperati on<SoneAggr egat or . Cont ext >
i mpl enent s Aggr egat or <SonmeAggr egat or . Cont ext >

{

public static class Context
{
oj ect val ue;
}

public void start(Fl owProcess fl owProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{

/1 get the group values for the current grouping
Tupl eEntry group = aggregatorCall.get G oup();

/1 create a new custom context object
Cont ext context = new Context();

/1 optionally, populate the context object

/1 set the context object
aggregat or Cal | . set Cont ext (context);

}

public void aggregate(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{

/1 get the current argunent val ues
Tupl eEntry argunents = aggregatorCal|l.get Argunents();

/1 get the context for this grouping
Cont ext context = aggregatorCall.getContext();

/1 update the context object

}

public void conplete(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{
Cont ext context = aggregatorCall.getContext();

/! create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/1 insert sonme values into the result Tuple based on the context

Example'3.5 CettarmAddnegat@sul t Tupl e
aggregat or Cal | . get Qut put Col | ector().add(result);

}

Using and Developing Operations

Aggregators should declare both the number of argument values they expect, and the field names of the Tuple they
will return.

Aggregators must accept 1 or more values in a Tuple as arguments, by default they will accept any number
(Oper ati on. ANY) of values. Cascading will verify the number of arguments selected match the number of
arguments expected.

Aggregators may optionally declare the field names they return, by default Aggregators declare
Fi el ds. UNKNOWN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by
accepting the values from the user via a constructor implementation.

CascadingV 1.2 Cascading - User Guide 35

Using and Developing Operations

public class AddTupl esAggr egat or
ext ends BaseQper at i on<AddTupl esAggr egat or . Cont ext >
i mpl ement s Aggr egat or <AddTupl esAggr egat or . Cont ext >

{

public static class Context
{
| ong val ue = 0;
}

publ i c AddTupl esAggr egat or ()
{
/1 expects 1 argunent, fail otherw se
super(1, new Fields("sum'));

}

publ i c AddTupl esAggregator(Fields fieldDeclaration)
{
/1 expects 1 argunent, fail otherw se
super(1, fieldDeclaration);

}

public void start(Fl owProcess fl owProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)
{
/1 set the context object, starting at zero
aggregatorCal | . set Context (new Context());

}

public void aggregate(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |l)
{
Tupl eEntry arguments = aggregatorCal |l . get Argunents();
Cont ext context = aggregatorCall.getContext();

/! add the current argunment value to the current sum
context.val ue += argunents. getlnteger(0);

}

public void conpl ete(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{
Cont ext context = aggregatorCall.getContext();

[/l create a Tuple to hold our result val ues
Tupl e result = new Tupl e();
Example 5.6 Add Tuples Aggregator
/1 set the sum
result.add(context.value);

/1 return the result Tuple
aggregat or Cal | . get Qut put Col | ector().add(result);

Using and Developing Operations

The example above implements a fully functional Aggr egat or that accepts one value in the argument Tuple, adds
all these argument Tuplesin the current grouping, and returns the result as a new Tuple.

The first constructor assumes a default field name this Aggr egat or will return, but it is a best practice to always
give the user the option to override the declared field names to prevent any field name collisions that would cause
the planner to fail.

5.5 Buffer

A Buf f er expects set of argument Tuples in the same grouping, and may return zero or more result Tuples.

The Buf f er isvery similar to an Aggr egat or except it receives the current Grouping Tuple and an iterator of all
theargumentsit expectsfor every value Tuplein the current grouping, all on the same method call. Thisisvery similar
to the typical Reducer interface, and is best used for operations that need greater visibility to the previous and next
elementsin the stream. For example, smoothing a series of time-stamps where there are missing values.

An Buf f er may only be used with an Ever y pipe, and it may only follow aGr oupBy or CoGr oup pipe type.

To create a customBuf f er , subclass the class cascadi ng. oper at i on. BaseQOper at i on and implement the
interfacecascadi ng. oper at i on. Buf f er. Because BaseQper at i on has been subclassed, the oper at e
method, as defined on the Buf f er interface, is the only method that must be implemented.

CascadingV 1.2 Cascading - User Guide 37

Using and Developing Operations

public class SoneBuffer extends BaseOperation inplenments Buffer

{
public void operate(FlowProcess flowProcess, BufferCall bufferCall)

{

/1 get the group values for the current grouping
Tupl eEntry group = bufferCall.getGoup();

/1 get all the current argunment values for this grouping
Iterator<Tupl eEntry> argunents = bufferCall.getArgunmentsiterator();

/Il create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

whi | e(argunent s. hasNext ())
{

Tupl eEntry argunent = arguments. next ();

/1 insert sone values into the result Tuple based on the arguemmts

}

/] return the result Tuple
bufferCal |l . get Qut put Col | ector().add(result);

}

Example 5.7 Custom Buffer
Buffer should declare both the number of argument valuesthey expect, and thefield names of the Tuplethey will return.

Buffers must accept 1 or more values in a Tuple as arguments, by default they will accept any number
(Oper ati on. ANY) of values. Cascading will verify the number of arguments selected match the number of
arguments expected.

Buffers may optionally declare the field names they return, by default Buf f er s declare Fi el ds. UNKNOAN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by
accepting the values from the user via a constructor implementation.

CascadingV 1.2 Cascading - User Guide 38

Using and Developing Operations

public class AverageBuffer extends BaseOperation inplenents Buffer

{

public AverageBuffer()
{

super(1, new Fields("average"));

}

public AverageBuffer(Fields fieldDeclaration)
{

super(1, fieldDeclaration);

}

public void operate(FlowProcess flowProcess, BufferCall bufferCall)
{
/1 init the count and sum
| ong count = O;
l ong sum = 0O;

/1 get all the current argunment values for this grouping
I'terator<Tupl eEntry> argunents = bufferCall.getArgunmentsiterator();

whi | e(argunments. hasNext ())
{
count ++;
sum += argunents. next().getlnteger(0);

}

/! create a Tuple to hold our result val ues
Tupl e result = new Tuple(sum/ count);

/1 return the result Tuple
buf ferCal |l . get Qut put Col | ector().add(result);

}

Example 5.8 Average Buffer

The example above implements a fully functional buffer that accepts one value in argument Tuple, adds all these
argument Tuples in the current grouping, and returns the result divided by the number of argument tuples counted
inanew Tuple.

The first constructor assumes a default field name this Buf f er will return, but it is a best practice to always give
the user the option to override the declared field names to prevent any field name collisions that would cause the
planner to fail.

CascadingV 1.2 Cascading - User Guide 39

Using and Developing Operations

Note this example is somewhat fabricated, in practice a Aggr egat or should be implemented to compute averages.
A Buf f er would be better suited for "running averages' across very large spans, for example.

5.6 Operation and BaseOperation

In all the above sections, the cascadi ng. oper ati on. BaseQper at i on class was subclassed. This class is
an implementation of the cascadi ng. oper ati on. Qper ati on interface and provides a few default method
implementations. It is not strictly required to extendBaseQOper at i on, but it isvery convenient to do so.

When devel oping custom operations, the devel oper may need to initialize and destroy aresource. For example, when
doing pattern matching, aj ava. uti | . r egex. Mat cher may needto beinitialized and used in athread-safe way.
Or a remote connection may need to be opened and eventually closed. But for performance reasons, the operation
should not create/destroy the connection for each Tuple or every Tuple group that passes through.

The interface Oper at i on declares two methods, prepare() and cl eanup(). In the case of Hadoop and
MapReduce, the pr epare() and cl eanup() methods are called once per Map or Reduce task. pr epar e()
is called before any argument Tuple is passed in, and cl eanup() is called after al Tuple arguments have been
operated on. Within each of these methods, the developer can initialize a"context" object that can hold an open socket
connection, or Mat cher instance. The"context" isuser defined and isthe same mechanism used by the Aggr egat or
operation, except the Aggr egat or isalso given the opportunity to initialize and destroy its context viathest ar t ()
and conpl et e() methods.

If a"context" object is used, its type should be declared in the sub-class class declaration using the Java Generics
notation.

CascadingV 1.2 Cascading - User Guide 40

6. Advanced Processing

6.1 SubAssemblies

Cascading SubAssemblies are reusable pipe assemblies that are linked into larger pipe assemblies. Think of them as
subroutines in a programming language. The help organize complex pipe assemblies and allow for commonly used
pipe assemblies to be packaged into libraries for inclusion by other users.

To create a SubAssembly, the cascadi ng. pi pe. SubAssenbl y class must be subclassed.

public class SoneSubAssenbly extends SubAssenbly
{
publ i c SomeSubAssenbl y(Pipe | hs, Pipe rhs)
{
/1 continue assenbling against |hs
I hs = new Each(| hs, new SonmeFunction());
I hs = new Each(| hs, new SoneFilter());

/1 continue assenbling against |hs
rhs = new Each(rhs, new SoneFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|lhs, rhs);

join = new Every(join, new SomeAggregator());
join = new GroupBy(join);
join = new Every(join, new SonmeAggregator());

/1 the tail of the assenbly
join = new Each(join, new SonmeFunction());

/1 must register all assenbly tails
setTails(join);

}

Example 6.1 Creating a SubAssembly

In the above example, we pass in via the constructor pipes we wish to continue assembling against, and the last line
we register the 'join' pipe as a tail. This alows SubAssemblies to be nested within larger pipe assemblies or other
SubAssemblies.

CascadingV 1.2 Cascading - User Guide 41

Advanced Processing

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("lhs");

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

/1 our custom SubAssenbly

Pi pe pi pe = new SoneSubAssenbly(| hs, rhs);

pi pe = new Each(pi pe, new SoneFunction());

Example 6.2 Using a SubAssembly

Above we see how natural it isto include a SubAssembly into a new pipe assembly.

If we had a SubAssembly that represented a split, that is, had two or more tails, we could use the get Tai | s()

method to get at the array of "tails' set internally by theset Tai | s() method.

public class SplitSubAssenbly extends SubAssenbly

{
public SplitSubAssenbl y(Pipe pipe)
{

/1 continue assenbling against |hs

pi pe = new Each(pipe, new SoneFunction());

Pi pe I hs = new Pipe("l hs", pipe);

| hs = new Each(| hs, new SonmeFunction());

Pi pe rhs = new Pipe("rhs", pipe);

rhs = new Each(rhs, new SonmeFunction());

/1l nust register all assenbly tails
setTails(lhs, rhs);

}

Example 6.3 Creating a Split SubAssembly

CascadingV 1.2 Cascading - User Guide

42

Advanced Processing

/1 the "left hand side" assenbly head
Pi pe head = new Pi pe("head");

/1 our custom SubAssenbly
SubAssenbl y pi pe = new SplitSubAssenbl y(head);

/1 grab the split branches
Pi pe | hs = new Each(pipe.getTails()[0], new SoneFunction());
Pi pe rhs = new Each(pipe.getTails()[1], new SomeFunction());

Example 6.4 Using a Slit SubAssembly

Torephrasg, if aSubAssenbl y does not split the incoming Tuple stream, the SubAssembly instance can be passed
directly to the next Pipeinstance. But, if the SubAssenbl y splitsthe stream into multiple branches, each branch tail
must be passed to the set Tai | s() method, and the get Tai | s() method should be called to get a handle to the
correct branch to passto the next Pi pe instances.

6.2 Stream Assertions

N O
S
i
D
3
o
<

L e e e ! ‘

¢
(D

.

Stream assertions are simply amechanism to 'assert' that one or more valuesin atuple stream meet certain criteria. This
issimilar to the Javalanguage 'assert' keyword, or a unit test. An example would be 'assert not null* or ‘assert matches'.

Assertions are treated like any other function or aggregator in Cascading. They are embedded directly into the pipe
assembly by the developer. If an assertion fails, the processing stops, by default. Alternately they can trigger a Failure

Trap.

As with any test, sometimes they are wanted, and sometimes they are unnecessary. Thus stream assertions are
embedded as either 'strict’ or 'validating'.

CascadingV 1.2 Cascading - User Guide 43

Advanced Processing

When running a tests against regression data, it makes sense to use strict assertions. This regression data should be
small and represent many of the edge cases the processing assembly must support robustly. When running tests in
staging, or with data that may vary in quality sinceit is from an unmanaged source, using validating assertions make
much sense. Then there are obvious cases where assertions just get in the way and slow down processing and it would
be nice to just bypass them.

During runtime, Cascading can be instructed to plan out strict, validating, or all assertions before building the final
MapReduce jobs viathe MapReduce Job Planner. And they aretruly planned out of the resulting job, not just switched
off, providing the best performance.

Thisisjust one feature of lazily building MapReduce jobs via a planner, instead of hard coding them.

/[l incoming -> "ip", "tine", "nmethod", "event", "status", "size"
AssertNot Nul I notNull = new AssertNotNull ();
assenbly = new Each(assenbly, AssertionLevel.STRI CT, notNull);

Assert Si zeEqual s equal s = new Assert Si zeEqual s(6);
assenbly = new Each(assenbly, AssertionLevel.STRI CT, equals);

Assert Mat chesAll mat chesAll = new Assert Mat chesAl | (" (GET| HEAD| POST) ") ;
assenbly = new Each(assenbly, new Fi el ds("net hod"),
AssertionLevel . STRICT, matchesAll);

/1 outgoing -> "ip", "tine", "method", "event", "status", "size"

Example 6.5 Adding Assertions

Again, assertions are added to a pipe assembly like any other operation, except the Asser ti onLevel must be set,
so the planner knows how to treat the assertion during planning.

Properties properties = new Properties();

/1 renoves all assertions fromthe Fl ow
Fl owConnect or. set Asserti onLevel (properties, AssertionLevel.NONE);

Fl owConnect or fl owConnector = new Fl owConnector(properties);

Fl ow fl ow = fl owConnect or. connect(source, sink, assenbly);

Example 6.6 Planning Out Assertions

To configure the planner to remove some or all assertions, a property must be set
via the Fl owConnect or#set AssertionLevel () method. AssertionLevel . NONE removes al
assertions. AssertionLevel . VALID Kkeeps VALID assertions but removes STRICT ones. And
AssertionLevel . STRI CT keeps all assertions, which is the planner default value.

CascadingV 1.2 Cascading - User Guide 44

Advanced Processing

6.3 Failure Traps

Flow

Failure Traps are the same as a Tap sink (opposed to a source), except being bound to a particular tail element of the
pipe assembly, traps can be bound to intermediate pipe assembly segments, like to a Stream Assertion.

Whenever an operation fails and throws an exception, and there is an associated trap, the offending Tuplewill be saved
to the resource specified by the trap Tap. This allows the job to continue processing without any data loss.

By design, clusters are hardware fault tolerant. L ose a node, the cluster continues working.

But software fault tolerance is a little different. Failure Traps provide a means for the processing to continue without
losing track of the datathat caused the fault. For high fidelity applications, thismay not be so attractive, but low fidelity
applications (like web page indexing) this can dramatically improve processing reliability.

CascadingV 1.2 Cascading - User Guide 45

Advanced Processing

/1 ...sone useful pipes here

/1 nanme this pipe assenbly segment
assenbly = new Pi pe("assertions", assenbly);

Assert Not Nul | notNull = new Assert Not Null ();
assenbly = new Each(assenbly, AssertionLevel.STRICT, notNull);

Assert Si zeEqual s equal s = new Assert Si zeEqual s(6);
assenbly = new Each(assenbly, AssertionLevel.STRICT, equals);

Assert Mat chesAl |l mat chesAll = new Assert Mat chesAl | (" (GET| HEAD| PCST) ") ;
assenbly = new Each(assenbly, new Fi el ds("net hod"),
AssertionLevel . STRICT, matchesAll);
/1 ...sone nore useful pipes here
Map<Stri ng, Tap> traps = new HashMap<Stri ng, Tap>();
traps. put("assertions", trap);
Fl owConnect or fl owConnector = new Fl owConnector();

Fl ow fl ow =
fl owConnect or. connect ("l og-parser", source, sink, traps, assenbly);

Example 6.7 Setting Traps

In the above example, we bind our trap Tap to the pipe assembly segment named "assertions'. Note how we can name
branches and segments by using asingle Pi pe instance and it appliesto all subsequent Pi pe instances.

Note

Traps are for exceptional cases, in the same way Java Exception handling is not for application flow
control, thustraps are not ameans to filter some datainto other locations. Applications that need to filter
good and bad data should do so explicitly.

6.4 Event Handling

Each Flow, has the ability to execute callbacks via an event listener. This is very useful when external application
need to be notified that a Flow has completed.

A good exampleiswhen running Flows on an Amazon EC2 Hadoop cluster. After the Flow is completed, a SQS event
can be sent notifying another application it can now fetch the job results from S3. In tandem, it can start the process
of shutting down the cluster if no more work is queued up for it.

Flows support event listeners through the cascadi ng. f1 ow. Fl owLi st ener interface. The FlowListener
interface supports four events,onSt art i ng, onSt oppi ng,onConpl et ed, and onThr owabl e.

CascadingV 1.2 Cascading - User Guide 46

Advanced Processing

onStarting
The onStarting event is fired when a Flow instance receivesthe st art () message.

onStopping
The onStopping event is fired when a Flow instance receivesthe st op() message.

onCompleted
The onCompleted event is fired when a Flow instance has completed all work whether if was success or failed.
If there was a thrown exception, onThrowable will be fired before this event.

onThrowable
The onThrowable event is fired if any internal job client throws a Throwable type. This throwable is passed as
an argument to the event. onThrowable should return true if the given throwable was handled and should not be
rethrown from the Fl ow. conpl et e() method.

FlowL isteners are useful when external systems must be notified when a Flow has completed or failed.

6.5 Template Taps

The Tenpl at eTap Tap class provides a simple means to break large datasets into smaller sets based on valuesin
the dataset. Typically thisis called 'binning' the data, where each 'bin’ of datais named after values shared by the data
in that bin. For example, organizing log files by month and year.

TextDel i mted scheme = new TextDelinited(new Fields("year", "nonth", "entry"

Hf s tap = new Hf s(schene, path);

String tenplate = "%-9%"; // dirs naned "year-nonth"
Tap nonths = new Tenpl at eTap(tap, tenplate, SinkMdde. REPLACE);

Inthe above example, we construct aparent Hf s Tap and passit to the constructor of aTenpl at eTap instancealong
with a String format 'template’. This format template is populated in the order values are declared via the Schene
class. If more complex path formatting is necessary then you may subclassthe Tenpl at eTap.

Note that you can only create sub-directoriesto bin datainto. Hadoop must still write 'part’ filesinto each bin directory.

One last thing to keep in mind is whether or not 'binning' happens during the Map or Reduce phase. By doing a
Gr oupBy on the values that will be used to populate the template, binning will happen during the Reduce phase and
likely scale much better if there are a very large number of unique grouping keys.

6.6 Scripting

Cascading was designed with scripting in mind. Since it is just an API, any Java compatible scripting language can
import and instantiate Cascading classes and create pipe assemblies, flows, and execute those flows.

And if the scripting language in question supports Domain Specific Language (DSL) creation, the user can create her
own DSL to handle common idioms.

CascadingV 1.2 Cascading - User Guide 47

),

"\t"

) ;

Advanced Processing

See the Cascading website for publicly available scripting language bindings.

6.7 Custom Taps and Schemes

Cascading was designed to be easily configured and enhanced by devel opers. Besides allowing for custom Operations,
developers can provide custom Tap and Schene types so applications can connect to system external to Hadoop.

A Tap represents something "physical”, like a file or a database table. Subsequently Tap implementations are
responsible for life cycle issues around the resource they represent, like tests for existence, or deleting.

A Scheme represents a format or representation, like a text format for a file, or columns in a table. Schemes are
responsiblefor converting the Tap managed resources proprietary format to and fromacascadi ng. t upl e. Tupl e
instance.

Unfortunately creating custom Taps and Schemes can be an involved process and requires some knowledge of Hadoop
and the Hadoop FileSystem API. Most commonly, the cascadi ng. t ap. Hf s class can be subclassed if anew file
system is to be supported, assuming passing afully qualified URL to the Hf s constructor isn't sufficient (the Hf s tap
will look up afile system based on the URL scheme viathe Hadoop FileSystem AP).

Delegating to the Hadoop FileSystem APl is not a strict requirement, but the developer
will need to implement a Hadoop org.apache. hadoop. mapred. | nput Fornmat and/or

or g. apache. hadoop. mapr ed. Qut put For mat so that Hadoop knows how to split and handle the incoming/
outgoing data. The custom Schene isresponsiblefor setting | nput For nat and Qut put For mat ontheJobConf
viathesi nkl ni t and sour cel ni t methods.

For examples on how to implement a custom Tap and Scheme, see the Cascading Modules [??7] page for samples.

6.8 Custom Types and Serialization

The Tupl e class is a generic container for all j ava. | ang. Cbj ect instances (1.0 required al objects be of
typel ava. | ang. Conpar abl e). Subsequently any primitive value or custom Class can be stored in a Tupl e
instance, that is, returned by aFunct i on, Aggr egat or, or Buf f er asaresult value.

But for this to work any Class that isn't a primitive value or a Hadoop Wi t abl e type will need to have a
corresponding Hadoop 'serialization’ class registered in the Hadoop configuration files for your cluster. Hadoop
Wit abl e types work because there is already a generic serialization implementation built into Hadoop. See the
Hadoop documentation for registering a new seriaization helper or to create Wi t abl e types. Cascading will
automatically inherit any registered serialization implementations.

During serialization and deserialization of Tupl e instances that contain custom types, the Cascading Tupl e
serialization framework will need to store the class name (asa St ri ng) before serializing the custom object. This
can be very space inneficient. To overcomethis, custom types can add the Ser i al i zat i onToken Javaannotation
tothe customtypeclass. TheSer i al i zat i onToken annotation expects two arrays, one of integers named tokens,
and one of Class name strings. Both arrays must be the same size, and no token can be less than 128 (the first 128
values are for internal use).

During serialization and deserialization, the token values are used instead of the St r i ng Class names to reduce the
amount of storage used.

CascadingV 1.2 Cascading - User Guide 48

???
???

Advanced Processing

Serialization tokensmay al so be stored in the Hadoop config filesor set asaproperty passed tothe FI owConnect or,
with the property namecascadi ng. seri al i zati on. t okens. Thevalue of this property isacomma separated
list of t oken=cl assname values.

Note Cascading will natively serialize/deserialize all primitives and byte arrays (byt e[]). It aso uses the token 127
for the Hadoop Byt esW i t abl e class.

Along with custom serialization, Cascading supports lazy deserialization during Tuple comparison when Hadoop sorts
keys during the "shuffle" phase. Thisis accomplished by implementing the St r eanConpar at or interface. Seethe
javadoc for detailed instructions on implementing and the unit tests for examples.

By default Cascading will lazily deserialize each element in the Tuple during sorting for comparison. But the
St r eamConpar at or alows for complex/custom Java types to aso lazily deserialize fields in the object during
comparison.

6.9 Partial Aggregation instead of Combiners

Cascading does not support the so called MapReduce Combiners. Combiners are very powerful in that they reduce
the 10 between the Mappers and Reducers. Why send al your Mapper to data to Reducers when you can compute
some values Map side and combine them in the Reducer. But Combiners are limited to Associative and Commutative
functions only, like 'sum' and 'max’. And in order to work, values emitted from the Map task must be serialized, sorted
(deserialized and compared), deserialized again and operated on, where again the results are serialized and sorted.
Combinerstrade CPU for gainsin 1O.

Cascading takes a different approach by providing a mechanism to perform partial aggregations Map side and also
combine them Reduce side. But Cascading choosesto trade Memory for 10 gains by caching values (up to athreshol d).
Thisapproach bypassesthe unnecessary serialization, deserialization, and sorting steps. It also allowsfor any aggregate
function to be implemented, not just Associative and Commutative ones.

Cascading hasafew built in partial aggregate operations, actually these "operations' are SubA ssemblies. Further, they
are implementations of the AggregateBy SubAssembly.

Using partial aggregate operations is quite easy, they are actually less verbose than using a standard Aggregate
operation.

Pi pe assenbly = new Pi pe("assenbly");

/1

Fi el ds groupi ngFi el ds = new Fields("date");

Fi el ds val ueField = new Fields("size");

Fiel ds sunField = new Fields("total-size");

assenbly = new SunBy(assenbly, groupingFields, valueField, sunField, |ong.class);

Example 6.8 Using a SumBy

To compose multiple partial aggregate operations, things work slightly differently.

CascadingV 1.2 Cascading - User Guide 49

Advanced Processing

Pi pe assenbly = new Pi pe("assenbly");

/1
Fi el ds groupi ngFi el ds = new Fields("date");

/1 note we do not pass the parent assenbly Pipe in

Fi el ds val ueField = new Fields("size");

Fiel ds sunfField = new Fields("total -size");

SunBy sunmBy = new SunBy(val ueField, sunField, |ong.class);

Fields countField = new Fields("numevents");
Count By count By = new CountBy(countField);

assenbly = new Aggr egat eBy(assenbly, groupingFields, sunBy, countBy);

Example 6.9 Composing partials with AggregateBy

It is important to note that a G- oupBy Pipe is embedded in the resulting assemblies above. But only one GroupBy
will be performed in the case of the AggregateBy, all of the partial aggregations will be performed simultaneously.
It is also important to note, depending on the final pipe assembly, the Map side partia aggregate functions may be
planned into the previous Reduce operation in Hadoop further improving performance of the application.

CascadingV 1.2 Cascading - User Guide 50

7. Built-In Operations

7.1 Identity Function

The cascadi ng. operation. | denti fy function is used to "shape" a tuple stream. Here are some common
patterns.

Discard unused fields
Here ldentity passes its arguments out as results, thanksto the Fi el ds. ARGS field declaration.

/[l incoming -> "ip", "tine", "nmethod", "event", "status", "size"
Identity identity = new Ildentity(Fields. ARGS);
pi pe = new Each(pipe, new Fields("ip", "nmethod"), identity,

Fi el ds. RESULTS);

/! outgoing -> "ip", "nethod"

In practicethefield declaration can beleft out asFi el d. ARGS isthe default declaration for the Identity function.
Additionally Fi el ds. RESULTs can be left off asit isthe default for the Ever y pipe.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"
pi pe = new Each(pipe, new Fields("ip", "method"), new Identity());

/! outgoing -> "ip", "nethod"

Rename all fields
Here Identity renamestheincoming arguments. Since Fields.RESUL TSisimplied, theincoming Tupleisreplaced
by the arguments selected and given new field names as declared on I dentity.

/1 incoming -> "ip", "method"

Identity identity = new ldentity(new Fields("address", "request"));
pi pe = new Each(pipe, new Fields("ip", "nmethod"), identity);

/1 outgoing -> "address", "request"

In the above example, if there were more fields than "ip" and "method", it would work fine, all the extra fields
would be discarded. If the same was true for the next example, the planner would fail.

/1 incoming -> "ip", "nethod"

Identity identity = new ldentity(new Fields("address", "request"));

CascadingV 1.2 Cascading - User Guide 51

Built-In Operations

pi pe = new Each(pipe, Fields.ALL, identity);

/1 outgoing -> "address", "request"

SinceFi el ds. ALL isthe default argument selector for the Each pipe, it can beleft out.

/!l incoming -> "ip", "method"

Identity identity = new ldentity(new Fields("address", "request"));
pi pe = new Each(pipe, identity);

/1 outgoing -> "address", "request"

Rename asingle field
Here we rename asingle field, but return it along with an input Tuple field as the resullt.

/1 incoming -> "ip", "tine", "nethod", "event", "status", "size"

Fields fieldSelector = new Fields("address", "nethod");
Identity identity = new ldentity(new Fields("address"));

pi pe = new Each(pipe, new Fields("ip"), identity, fieldSelector);

/1 outgoing -> "address", "nethod"

Coerce values to specific primitive types
Here we replace the Tuple String values "status' and "size" withi nt and | ong, respectively.

/!l incomng -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity(|nteger.TYPE, Long.TYPE);
pi pe = new Each(pipe, new Fields("status", "size"), identity);

/1 outgoing -> "status", "size"

Or we can replace just the Tuple String value "status’ with i nt while keeping all the other values in the output
Tuple.

/1 incoming -> "ip", "tine", "nethod", "event", "status", "size"

Identity identity = new Identity(Integer.TYPE);
pi pe = new Each(pipe, new Fields("status"), identity,
Fi el ds. REPLACE);

/1 outgoing -> "ip", "tine", "nethod", "event", "status", "size"

CascadingV 1.2 Cascading - User Guide 52

Built-In Operations

7.2 Debug Function

Thecascadi ng. oper at i on. Debug functionisautility Funct i on (actualy, itsaFi | t er) that will print the
current argument Tuple to either st dout orst der r . Used with the DebugLevel enum values NONE,DEFAULT,
or VERBCOSE, different debug levels can be embedded in a pipe assembly.

Below weinsert aDebug operation at the VERBOSE level, but configure the planner to remove all Debug operations
from the resulting Fl ow.

Pi pe assenbly = new Pi pe("assenbly");

/1

assenbly = new Each(assenbly, DebugLevel.VERBOSE, new Debug());
/1

Properties properties = new Properties();

/1 tell the planner renove all Debug operations

Fl owConnect or . set DebuglLevel (properties, DebuglLevel.NONE);

/1

Fl onConnect or fl owConnector = new Fl owConnector(properties);

Fl ow fl ow = fl owConnect or. connect("debug", source, sink, assenbly);

7.3 Sample and Limit Functions

The Sample and Limit functions are used to limit the number of Tuples that pass through a pipe assembly.

Sample
Thecascadi ng. operation.filter. Sanpl e filter allows apercentage of tuplesto pass.

Limit
Thecascadi ng. operation.filter.Limt filter allowsaset number of Tuplesto pass.

7.4 Insert Function

Thecascadi ng. oper ati on. | nsert functionallowsfor insertion of constant literal valuesinto thetuple stream.

This is most useful when a splitting a tuple stream and one of the branches needs some identifying value. Or when
some missing parameter or value, like a date String for the current date, needs to be inserted.

7.5 Text Functions

Cascading includes a number of text functionsin thecascadi ng. oper ati on. t ext package.

CascadingV 1.2 Cascading - User Guide 53

Built-In Operations

FieldJoiner
The cascadi ng. operation. text. Fi el dJoi ner function joins al the values in a Tuple with a given
delimiter and stuffs the result into anew field.

FieldFormatter
Thecascadi ng. operati on. text. Fi el dFor matt er functionformats Tuplevalueswith agiven String
format and stuffs the result into a new field. The j ava. util. Fornatter class is used to create a new
formatted String.

DateParser
The cascadi ng. operati on. t ext. Dat ePar ser function is used to convert a text date String to a
timestamp using thej ava. t ext . Si npl eDat eFor mat syntax. Thetimestamp isal ong value representing
the number of milliseconds since January 1, 1970, 00:00:00 GMT. By default it emits afield with the name "ts"
for timestamp, but this can be overridden by passing a declared Fields value.

[/ "time" -> 01/ Sep/2007:00: 01: 03 +0000

Dat ePar ser dat eParser = new Dat eParser("dd/ MW yyyy: HH. nm ss Z");
pi pe = new Each(pipe, new Fields("time"), dateParser);

/] outgoing -> "ts" -> 1188604863000

Above we convert an Apache log style date-time field into al ong timestamp.

DateFormatter
The cascadi ng. oper ati on. t ext. Dat eFor mat t er function is used to convert a date timestamp to a
formatted String. This function expects al ong value representing the number of milliseconds since January 1,
1970, 00:00:00 GMT. And usesthej ava. t ext . Si npl eDat eFor mat syntax.

/] "ts" -> 1188604863000

Dat eFormatter formatter =
new Dat eFormatter(new Fields("date"), "dd/ MW yyyy");
pi pe = new Each(pipe, new Fields("ts"), formatter);

/1 outgoing -> "date" -> 31/ Aug/ 2007

Above we convert al ong timestamp ("ts") to a date String.

7.6 Regular Expression Operations

RegexSplitter
The cascadi ng. operati on. regex. RegexSplitter function will split an argument value by a
regex pattern String. Internally, this function usesj ava. util . regex. Pattern#split (), thus behaves
accordingly. By default this function splits on the TAB character ("\t"). If aknown number of values will emerge
from this function, it can declare field names. In this case, if the splitter encounters more split values than

CascadingV 1.2 Cascading - User Guide 54

Built-In Operations

field names, the remaining values will be discarded, seej ava. uti | . regex. Pattern#split(input,
[imt) formoreinformation.

RegexParser
The cascadi ng. oper ati on. r egex. RegexPar ser function is used to extract a regular expression
matched value from an incoming argument value. If the regular expression is sufficiently complex, and int array
may be provided which specifies which regex groups should be returned into which field names.

/1 incoming -> "line"

String regex =

R G A D B o IR B A S AW NG I B D AR B

VNI TF) (DN 1) I TN (0N 1) (I 1%) %87
Fiel ds fieldDeclaration =

new Fields("ip", "time", "nethod", "event", "status", "size");
int[] groups = {1, 2, 3, 4, 5, 6};
RegexPar ser parser = new RegexParser(fiel dDecl aration, regex, groups);
assenbly = new Each(assenbly, new Fields("line"), parser);

/1 outgoing -> "ip", "tine", "nethod", "event", "status", "size"

Above, we parse an Apache log "line" into its parts. Note the int[] groups array starts at 1, not 0. Group 0 isthe
whole group, so if included the first field would be a copy of "line" and not "ip".

RegexReplace
The cascadi ng. operation. regex. RegexRepl ace function is wused to replace a
regex matched value with a replacement vaue It maybe wused in a replace
al" or “replace first" mode. See java.util.regex.Matcher#replaceAl() and
java. util.regex. Mat cher #r epl aceFi r st () methods.

/! incoming -> "line"
RegexRepl ace repl ace =
new RegexRepl ace(new Fields("clean-line"), "\\s+", " ", true);

assenbly = new Each(assenbly, new Fields("line"), replace);

/!l outgoing -> "clean-line"

Above we replace all adjoined white space characters with a single space character.

RegexFilter
The cascadi ng. oper ati on. regex. RegexFi | t er function will apply a regular expression pattern
String against every input Tuple value and filter the Tuple stream accordingly. By default, Tuples that match
the given pattern are kept, and Tuples that do not match are filtered out. This can be changed by setting
"removeMatch” tot r ue. Also, by default, the whole Tuple is matched against the given pattern String (TAB
delimited). If "matchEachElement” is set tot r ue, the pattern is applied to each Tuple valueindividually. See the
java. util.regex. Mat cher #f i nd() method.

CascadingV 1.2 Cascading - User Guide 55

Built-In Operations

[/l incoming -> "ip", "tine", "nethod", "event", "status", "size"

Filter filter = new RegexFilter(""68\\..*");
assenbly = new Each(assenbly, new Fields("ip"), filter);

/1 outgoing -> "ip", "tine", "nmethod", "event", "status", "size"

Above we keep all lines where the "ip" address starts with "68.".

RegexGenerator
The cascadi ng. oper ati on. regex. RegexGener at or function will emit a new Tuple for every

matched regular expression group, instead of a Tuple with every group as avalue.
/1 incomng -> "line"
String regex = "(?2<!\\pL) (?=\\pL)[" J*(?<=\\pL)(?2!'\\pL)";
Function function = new RegexGenerator(new Fields("word"), regex);

assenbly = new Each(assenbly, new Fields("line"), function);

/1 outgoing -> "word"

Above each "line" in adocument is parsed into unique words and stored in the "word" field of each result Tuple.

RegexSplitGenerator
Thecascadi ng. oper ati on. r egex. RegexSpl i t Gener at or functionwill emit anew Tuplefor every

split on the incoming argument value delimited by the given pattern String. The behavior is similar to the
RegexSplitter function.

7.7 Java Expression Operations

Cascading provides some support for dynamically compiled Java expression to be used as either Funct i ons or
Fi | t ers. This functionality is provided by the Janino embedded compiler. Janino and its documentation can be
found on its website http://www.janino.net/. But in short, an Expression is a single line of Java, for examplea +
3 * 2 ora < 7.Thefirst would resolve to some number, the second to a boolean value. Where a and b are
field names passed in as Tuple arguments to the Operation. Janino will compile this expression into byte code giving
compiled code processing speeds.

ExpressionFunction
The cascadi ng. oper ati on. expr essi on. Expressi onFunct i on function dynamicaly resolves a
given expression using argument Tuple values as inputs to the fields specified in the expression.

/1 incoming -> "ip", "tine", "nmethod", "event", "status", "size"
String exp =

"\"this \" + method + \" request was \" + size + \" bytes\"";
Fields fields = new Fields("pretty");

CascadingV 1.2 Cascading - User Guide 56

http://www.janino.net/

Built-In Operations

Expr essi onFunction function =
new Expressi onFunction(fields, exp, String.class);

assenbly =
new Each(assenbly, new Fields("nethod", "size"), function);
/1 outgoing -> "pretty" = "this GET request was 1282652 byt es"

Above, we create a new String value form our expression. Note we must declare the type of every input Tuple
value so the expression compiler knows how to treat the variablesin the expression.

ExpressionFilter
The cascadi ng. oper ati on. expr essi on. Expressi onFi | t er filter dynamically resolves a given
expression using argument Tuple values asinputsto the fields specified in the expression. Any Tuple that returns
true for the given expression will be removed from the stream.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"

ExpressionFilter filter =
new ExpressionFilter("status != 200", Integer.TYPE);

assenbly = new Each(assenbly, new Fields("status"), filter);

/1 outgoing -> "ip", "tine", "nmethod", "event", "status", "size"

Above, every line in the Apache log that does not have a"200" status will be filtered out. Notice that the "status”
would be a String in this exampleif it was emitted from a RegexParser, if so the ExpressionFilter will coerce the
valuefromaStringto ani nt for the comparison.

7.8 XML Operations

All XML Operations are kept in amodule other than core, so can be included in a Cascading application by including
the cascadi ng- xm - x. y. z. j ar in the project. This module has one dependency, the TagSoup library, which
allows for HTML and XML "tidying". More about TagSoup can be read on its website,http://home.ccil .org/~cowan/
XML /tagsoup/.

XPathParser
The cascadi ng. oper ati on. xm . XPat hPar ser function will extract a value from the passed Tuple
argument into a new Tuple field value. One Tuple value for every given XPath expression will be created.
This function effectively converts an XML document into a table. If the returned value of the expression is
aNodelL.i st , only the first Node is used. The Node is converted to a new XML document and converted to a
String. If only the text values are required, search on thet ext () nodes, or consider using XPathGenerator to
handle multiple NodeLi st values.

XPathGenerator
Thecascadi ng. oper ati on. xm . XPat hGener at or functionisagenerator function that will emit anew
Tuple for every Node returned by the given X Path expression.

CascadingV 1.2 Cascading - User Guide 57

http://home.ccil.org/~cowan/XML/tagsoup/
http://home.ccil.org/~cowan/XML/tagsoup/

Built-In Operations

XPathFilter
Thecascadi ng. operati on. xnm . XPat hFi | t er filter will filter out aTupleif thegiven XPath expression
returnsf al se. Set the removeMatch parameter tot r ue if thefilter should be reversed.

TapSoupParser
The cascadi ng. operati on. xnl . TagSoupPar ser function uses the Tag Soup library to convert
incoming HTML to clean XHTML. Usetheset Feat ure(feature, val ue) method to set TagSoup
specific features (as documented on the TagSoup website listed above).

7.9 Assertions

Cascading Stream Assertions are used to build robust reusable pipe assemblies. They can be planned out of a Flow
instance during runtime. For more information see the section onStream Assertions. Below we describe the Assertions
available in the corelibrary.

AssertEquals
Thecascadi ng. operati on. asserti on. Assert Equal s Assertion asserts the number of values given
on the constructor isequal to the number of argument Tuple valuesand that each constructor valueis. equal s()
to its corresponding argument value.

AssertNotEquals
The cascadi ng. oper ati on. asserti on. Assert Not Equal s Assertion asserts the number of values
given on the constructor is equal to the number of argument Tuple values and that each constructor value is not
. equal s() toitscorresponding argument value.

AssertEqualsAll
Thecascadi ng. operati on. assertion. Assert Equal sAl | Assertion asserts that every value in the
argument Tupleis. equal s() tothesingle vaue given on the constructor.

AssertExpression
Thecascadi ng. operati on. asserti on. Assert Expr essi on Assertiondynamically resolvesagiven
Java expression (see Expression Operations) using argument Tuple values. Any Tuple that returnst r ue for the
given expression passes the assertion.

AssertMatches
The cascadi ng. oper ati on. assertion. Assert Mat ches Assertion matches the given regular
expression pattern String against the whole argument Tuple by joining each individual element of the Tuple with
aTAB character (\t).

AssertMatchesAll
The cascadi ng. oper ati on. assertion. Assert Mat chesAl | Assertion matches the given regular
expression pattern String against each argument Tuple value individually.

AssertNotNull
The cascadi ng. operation. assertion. Assert Not Nul | Assertion asserts that every value in the
argument Tupleisnot anul | value.

AssertNull
The cascadi ng. operation. assertion. AssertNul | Assertion asserts that every vaue in the
argument Tupleisanul | value.

CascadingV 1.2 Cascading - User Guide 58

Built-In Operations

AssertSizeEquals
Thecascadi ng. operati on. asserti on. Assert Si zeEqual s Assertion assertsthat the current Tuple
in the tuple stream is exactly the given size. On evaluation, Tupl e#si ze() is called (note Tuples may hold
nul | values).

AssertSizel essThan
The cascadi ng. operation. assertion. Assert Si zeLessThan Assertion asserts that the current
Tuplein the stream has asize lessthan (<) the given size. On evaluation, Tupl e#si ze() iscalled (note Tuples
may hold nul | values).

AssertSizeMoreThan
The cascadi ng. operati on. assertion. Assert Si zeMor eThan Assertion asserts that the current
Tupleinthe stream hasasize morethan (>) the given size. On evaluation, Tupl e#si ze() iscalled (note Tuples
may hold nul | values).

AssertGroupSizeEquals
Thecascadi ng. operati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of items in the current grouping is equal (==) the given size. If a pattern String is given, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

AssertGroupSizel essThan
Thecascadi ng. operati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of itemsin the current grouping is less than (<) the given size. If a pattern String is given, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

AssertGroupSizeMoreThan
Thecascadi ng. operati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of itemsin the current grouping is more than (>) the given size. If apattern String is given, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

7.10 Logical Filter Operators

Thelogica Fi | t er operatorsallows the user to assemble more complex filtering to be used in asingle Pipe, instead
of chaining multiple Pipes together to get the same effect.

And
The cascadi ng. operation.filter.And Filter will logically 'and' the results of the constructor
provided Fi | t er instances. Logicaly, if Fi | t er #i sRenove() returnst r ue for al given instances, this
filter will returnt r ue.

Or
Thecascadi ng. operation.filter. O Filter will logicaly 'or' the results of the constructor provided
Fi | t er instances. Logically, if Fi | t er #i sRenove() returnst r ue for any of the given instances, this filter
will returnt r ue.

CascadingV 1.2 Cascading - User Guide 59

Built-In Operations

Not
The cascadi ng. operation.filter.Not Filter will logicaly 'not' (negation) the results of the
constructor provided Fi | t er instances. Logically, if Fil t er #i sRenove() returns true for the given
instance, thisfilter will return the oppositef al se.

Xor
The cascadi ng. operation.filter. Xor Filter will logicaly 'xor' (exclusive or) the results of the
constructor provided Fi | t er instances. Logically, if Fi |l t er#i sRenove() returns true for al given
instances, or returnsf al se for all given instances, thisfilter will returnt r ue. Note that Xor can only be applied

to two values.
/[l incoming -> "ip", "tine", "method", "event", "status", "size"
FilterNull filterNull = new FilterNull();

RegexFilter regexFilter = new RegexFilter("(GET| HEAD| POST)");
And andFilter = new And(filterNull, regexFilter);
assenbly = new Each(assenbly, new Fields("nmethod"), andFilter);

/'l outgoing -> "ip", "tine", "method", "event", "status", "size"

Example 7.1 Combining Filters

Above, we are "and-ing" the two filters. Both must be satisfied for the data to pass through this one Pipe.

CascadingV 1.2 Cascading - User Guide 60

8. Best Practices

8.1 Unit Testing

Testing Operations, pipe-assemblies, and applicationsisamust. Thecascadi ng. Cascadi ngTest Case provides
anumber of helper methods.

When testing custom Operations, usethei nvokeFuncti on(),i nvokeFil ter(),i nvokeAggregator (),
andi nvokeBuf f er () methods.

When testing Flows, use the val i dat eLengt h() methods. There are quite a few, each offering extra flexibility.
All of them will read the sink Tap and validate it is the correct length, have the correct Tuple size, and if the values
match a given regular expression pattern.

Thecascadi ng. d ust er Test Case can be used if you want to launch an embedded Hadoop cluster inside your
TestCase.

Makesurecascadi ng-t est-x.y. z.jar isinyour testing class-path in order to use these helper classes.

8.2 Flow Granularity

Even though having onelarge FI owmay result in aslightly more efficient execution plan, it ismuch more modular and
flexibleto give smaller Flowswell defined responsibilities and to hand all the dependent Flow instancestoaCascade
for execution asasingle unit. Using the Text Del i mi t ed Schene between FI owinstances also provides ameans
to hand intermediate data off to other systems for reporting or QA with minimal penalty while remaining compatible
with other tools.

8.3 SubAssemblies, not Factories

When developing your applications, use SubAssenbl y sub-classes, not "factory” methods. This way the code is
much easier to read and to test.

Thefunny thingisthat Obj ect constructorsare"factories', sothereisn't much reason to build frameworksto duplicate
what a constructor already does. Of course there are exceptions, but in practice they are rare when you can use a
SubAssenbl y.

8.4 Give SubAssemblies Logical
Responsibilities

SubA ssembies provide avery convenient meansto co-locate like responsibilitiesinto asingle place. For example, have
aPar si ngSubAssenbl y and aRul esSubAssenbl y, wherethefirst is responsible solely for parsing incoming
Tupl e streams (log files for example), and the second applies rules to decide if a given Tupl e should be discarded
or marked as bad.

CascadingV 1.2 Cascading - User Guide 61

Best Practices

Further, in your unit tests, you can create an Test Asserti onsSubAssenbly, that just inlines various
Val ueAssertions and Gr oupAsserti ons. Inlining Assertions directly in your SubAssemblies is also very
important, but sometimes it makes sense to have more tests outside of the business logic.

8.5 Java Operators in Field Names

There are a number of Operations in Cascading that will compile and apply Java expressions on the fly, see
Expr essi onFuncti on and Expr essi onFi | t er for examples. In these expressions, Operation argument field
names are used as variable in the expression. When creating field names, be conscious of the fact that if they are used
in an expression, some characters will cause compilation errors. For example, "first-name" is a valid field name for
use with Cascading, but thisexpression, first-nanme.trim(),will fal.

8.6 Debugging Planner Failures

Oftentimes the FI owConnect or will fail when attempting to plan a Fl ow. If the exception message given
by Pl anner Excepti on is vague, use the method Pl anner Excepti on. witeDOTI() to export a text
representation of the internal pipe assembly. DOT files can be opened by GraphViz and OmniGraffle. These plansare
only partial, but you will be able to see where the Cascading planner failed.

Also note you can create a DOT file from aFl owaswell viaFl ow. wri t eDOT() .

8.7 Optimizing Joins

When joining two streams viaa CoGroup Pipe, attempt to place the largest of the streamsin the left most argument to
the CoGroup. Joining multiple streams requires some accumulation of values before the join operator can begin, but
the left most stream will not be accumulated. This should improve the performance of most joins.

8.8 Debuging Streams

When creating complex assembliesit is safe to embed Debug operations (seeDebug Function) at appropriate debug
levels where appropriate. Use the planner to remove them at runtime for production and staging runsto prevent them
from using unnecessary resources.

8.9 Handling Good and Bad Data

It isvery common when processing raw data streams to encounter datathat is corrupt or malformed in someway. This
may be because bad content was fetched off the web via a crawler/fetcher upstream. Or a bug leaked into a browser
widget that sends user behavior information back for analysis. Whatever the use-case, thereislikely a set of rulesthat
govern when to identify and choose to keep or discard a questionable record.

It istempting to simiply throw an exception and have a Trap capture the offendingTupl e, but Trapswere not designed
as afiltering mechanism, and subsequently much valuable information would be lost.

Instead create a SubAssenbl y that applies rules to the stream by setting a binary field that marks the tuple as good
or bad. After all the rules are applied, split the stream based on the value of the good/bad boolean value. Optionally,
set areason field as to why the Tuple was marked bad.

CascadingV 1.2 Cascading - User Guide 62

Best Practices

8.10 Maintaining State in Operations

When creating custom Operations (Funct i on, Filt er ,Aggregat or, or Buf f er) do not store operation state
in classfields. For example, if implementing acustom 'counter' Aggr egat or , do not create afield named 'count’ and
increment it on every Aggr egat or . aggr egat e() cal. Thereisno guarantee your Operation will be called from
asinglethread in aJVM, future version of Hadoop could execute the same operation from multiple threads.

Tomaintain stateacrossOper at i on cals, createandinitializea"context" object that ismaintained by the appropriate
OperationCall (FilterCall ,FunctionCall, AggregatorCall, and Buf f er Cal I'). In the example
above, store an Integer 0 in the Aggr egat or Cal | passed to the Aggr egat or . st art () method and increment
itinthe Aggr egat or . aggr egat e() method.

8.11 Custom Types

It is generally frowned upon to pass a custom class through a Tuple stream. One one hand this increases coupling of
custom Operations to a particular type, and it removes opportunities for reducing the amount of data that passes over
the network (or is serialized/deserialized).

To overcome the first objection, with every custom type with multiple instance fields, attempt to provide Functions
that can promote a value from the custom object to a position in a Tuple or demote the Tuple value to a particular
field back into the custom type. This allows existing operations (like ExpressionFunction or RegexFilter) to operate
on values owned by a custom type. For example, if you have a Person object, have a Function named GetPersonAge
that takes Person as an argument and only returns the age as the result. The next operation can then Filter al Persons
based on their age. Thismay seem like morework and less effiicient, but it keeps your application flexible and reduces
the amount of duplicate code (the only alternative hereisto create a PersonAgeFilter which results in one more thing
to test).

8.12 Fields Constants

Instead of having String field names strewn about, create an Interface that holds a constant value for each field name;
public static Fields FIRST_NAME = new Fields("firstnane");

Using the Fields class instead of String allows for building more complex constants; publ i c static Fiel ds
NAME = FI RST_NAME. append(LAST_NAME);

8.13 Look at the Source Code

When in doubt, look at the Cascading source code. If something is not documented in this User Guide or JavaDoc and
its afeature of Cascading, the source code will give you clear instructions on what to do or expect.

CascadingV 1.2 Cascading - User Guide 63

9. CookBook

Some common idioms used in Cascading applications.

9.1 Tuples and Fields

Copy a Tupleinstance
Tupl e original = new Tuple("john", "doe");

/1 call copy constructor
Tupl e copy = new Tuple(original);

assert copy.get(O).equals("john");
Nest a Tuple instance within a Tuple

Tupl e parent = new Tupl e();
par ent . add(new Tupl e("john", "doe"));

assert ((Tuple) parent.get(0)).get(O).equals("john");

Build alonger Fields instance

Fields first = new Fields("first");
Fields mddle = new Fields("mddle");
Fiel ds | ast new Fields("last");

Fields full

first.append(niddle).append(last);
Remove afield from alonger Fieldsinstance
Fields full = new Fields("first", "mddle", "last");

Fields firstLast = full.subtract(new Fields("mddle"));

9.2 Stream Shaping

Split (branch) a Tuple Stream

Pi pe pi pe = new Pi pe("head");
pi pe = new Each(pipe, new SoneFunction());
I

CascadingV 1.2 Cascading - User Guide

CookBook

/1 split left with the branch nane 'I hs'
Pi pe I hs = new Pipe("l hs", pipe);

| hs = new Each(| hs, new SoneFunction());
/1

/1 split right with the branch name 'rhs'
Pi pe rhs = new Pipe("rhs", pipe);

rhs = new Each(rhs, new SonmeFunction());
/1

Copy afield value

Fiel ds argunment = new Fields("field");

Identity identity = new ldentity(new Fields("copy"));

/1 identity copies the incom ng argument to the result tuple
pi pe = new Each(pipe, argunent, identity, Fields.ALL);

Discard (drop) afield

/1 incomng -> "keepField", "dropField"

pi pe = new Each(pipe, new Fields("keepField"),
Fi el ds. RESULTS);

/1 outgoing -> "keepField"

new | dentity(),

Rename afield

/1 a sinple SubAssenbly that uses Identity internally
pi pe = new Renane(pipe, new Fields("front), new Fields("to")

Coerce field values from Strings to primitives

)

Fiel ds argunments = new Fields("longField", "bool eanField");
Cl ass types[] = new C ass[]{long.class, bool ean. cl ass};

Identity identity = new ldentity(types);

/1 convert fromstring to given type, inline replace val ues
pi pe = new Each(pipe, argunents, identity, Fields. REPLACE);

Insert constant values into a stream

Fields fields = new Fields("constantl1l", "constant2");
pi pe = new Each(pipe, new Insert(fields, "valuel", "value2"),
Fiel ds. ALL);

CascadingV 1.2 Cascading - User Guide

65

CookBook

9.3 Common Operations

Parse a String date/time value

/1 convert string date/tine field to a |ong

/1l mlliseconds "tinmestanp” val ue

String format = "yyyy: MM dd: HH: nm ss. SSS";

Dat ePar ser parser = new Dat eParser(new Fields("ts"), format);

pi pe = new Each(pipe, new Fields("datetinme"), parser, Fields.ALL);

Format atime-stamp to a date/time value

/1l convert a long mlliseconds "tinestanp" value to a string

String format = "HH nm ss. SSS";
Dat eFormatter formatter = new DateFormatter(new Fields("datetinme"),
format);

pi pe = new Each(pipe, new Fields("ts"), formatter, Fields.ALL);

9.4 Stream Ordering

Remove duplicate Tuplesin a stream

/1 group on all val ues

pi pe = new GroupBy(pipe, Fields.ALL);

/1 only take the first tuple in the grouping, ignore the rest

pi pe = new Every(pipe, Fields.ALL, new First(), Fields. RESULTS);

Create alist of unique values

/1l find all unique 'ip'" values
pi pe = new Uni que(pipe, new Fields("ip"));

Find first occurrence in time of a unique value

/1 group on all wunique "ip' values

/] secondary sort on 'datetine', natural order is in ascending order
pi pe = new GroupBy(pipe, new Fields("ip"), new Fields("datetine"));
/1l take the first "ip' tuple in the group which has the

/] ol dest 'datetinme' value

pi pe = new Every(pipe, Fields.ALL, new First(), Fields.RESULTS);

CascadingV 1.2 Cascading - User Guide 66

CookBook

9.5 APl Usage

Pass properties to a custom Operation

/1 set property on Flow
Properties properties = new Properties();

properties. put("key", "value");
Fl owConnect or fl owConnector = new Fl owConnector(properties);
/1

/1l get the property fromw thin an Qperation (Function, Filter, etc)
String value = (String) flowProcess. getProperty("key");

Bind multiple sources and sinks to a Flow

Pi pe headlLeft = new Pi pe("headLeft");
/! do sonething interesting

Pi pe headRi ght = new Pi pe("headRi ght");
/! do sonething interesting

/1 nmerge the two i nput streans
Pi pe nerged = new G oupBy(headLeft, headRi ght, new Fields("comon"));
1/

/1 branch the merged stream

Pipe tailLeft = new Pipe("taillLeft", nerged);

/1 filter out values to the |eft

tailLeft = new Each(tail Left, new SoneFilter());

Pipe tail Right = new Pipe("tail Right", nerged);
/1 filter out values to the right
tai |l R ght = new Each(tail Ri ght, new SoneFilter());

/1 source taps
Tap sourceLeft = new Hf s(new Fi el ds("sone-fields"), "sone/path");

Tap sourceRi ght = new Hf s(new Fields("sone-fields"), "sone/path");

Pi pe[] pipesArray = Pipe. pi pes(headLeft, headRi ght);
Tap[] tapsArray = Tap.taps(sourcelLeft, sourceRight);

/1 a conveni ence function for creating branch nanes to tap maps
Map<Stri ng, Tap> sources = Cascades.tapsMap(pi pesArray, tapsArray);

/1 sink taps

CascadingV 1.2 Cascading - User Guide

CookBook

Tap sinkLeft = new Hf s(new Fields("some-fields"), "some/path");
Tap sinkRight = new Hf s(new Fields("sone-fields"), "sone/path");

pi pesArray = Pipe.pipes(taillLeft, tailRi ght);
tapsArray = Tap.taps(sinkLeft, sinkRight);

/1 or create the Map manual |y

Map<String, Tap> sinks = new HashMap<String, Tap>();
sinks. put(taillLeft.getName(), sinkLeft);

sinks. put(tail Ri ght.getNanme(), sinkRight);

/1 set property on Flow
Fl owConnect or fl owConnector = new Fl owConnector();

Fl ow fl ow = fl owConnect or.connect("fl ow name", sources, sinks, tailleft, tail R ght);

CascadingV 1.2 Cascading - User Guide 68

10. How It Works
10.1 MapReduce Job Planner

The MapReduce Job Planner is an internal feature of Cascading.

When a collection of functions, splits, and joins are al tied up together into a 'pipe assembly’, the FlowConnector
object is used to create a new Flow instance against input and output data paths. This Flow is asingle Cascading job.

Internally the FlowConnector employs an intelligent planner to convert the pipe assembly to a graph of dependent
MapReduce jobs that can be executed on a Hadoop cluster.

All this happens under the scenes. As is the scheduling of the individua MapReduce jobs, and the clean up of
intermediate data sets that bind the jobs together.

e et I ettt B bl bt F___________________________

' Map \1Reduce 'Map i!Reduce

-0 60666000
©eee . . :

—_——e e, — o ________________. —_ e e A —E e, — e ———————— ———

Above we can see how a reasonably normal Flow would be partitioned into MapReduce jobs. Every job is delimited
by atemporary filethat isthe sink from the first job, and then the source to the next job.

To see how your Flows are partitioned, call the FI ow#wr i t eDOT() method. This will write a DOT [http://
en.wikipedia.org/wiki/DOT _language] file out to the path specified, and can be imported into a graphics package like
OmniGraffle or Graphviz.

10.2 The Cascade Topological Scheduler

Cascading has a ssimple class, Cascade , that will take a collection of Cascading Flows and execute them on the
target cluster in dependency order.

Consider the following example.

» Flow first' reads input file A and outputs B.

» Flow 'second' expectsinput B and outputs C and D.
» Flow 'third' expectsinput C and outputs E.

A Cascade is constructed through the CascadeConnect or class, by building an internal graph that makes each
Flow a 'vertex', and each file an 'edge’. A topological walk on this graph will touch each vertex in order of its
dependencies. When avertex has dl it'sincoming edges (files) available, it will be scheduled on the cluster.

CascadingV 1.2 Cascading - User Guide 69

http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language

How It Works

In the example above, 'first' goes first, 'second’ goes second, and 'third' is last.
If two or more Flows are independent of one another, they will be scheduled concurrently.

And by default, if any outputs from a Flow are newer than the inputs, the Flow is skipped. The assumption isthat the
Flow was executed recently, sincethe output isn't stale. So thereisno reason to re-executeit and use up resources or add
timeto thejob. Thisis similar behaviour a compiler would exhibit if a source file wasn't updated before a recompile.

Thisisvery handy if you have alarge number of jobsthat should be executed asalogical unit with varying dependencies
between them. Just pass them to the CascadeConnector, and let it sort them al out.

CascadingV 1.2 Cascading - User Guide 70

	Cascading - User Guide
	Table of Contents
	1. Cascading
	1.1 What is Cascading?
	1.2 Who should use Cascading?
	1.3 What is Apache Hadoop

	2. Diving In
	3. Data Processing
	3.1 Introduction
	3.2 Pipe Assemblies
	Assembling Pipe Assemblies
	Each and Every Pipes
	GroupBy and CoGroup Pipes
	Sorting

	3.3 Source and Sink Taps
	3.4 Field Algebra
	3.5 Flows
	Creating Flows from Pipe Assemblies
	Configuring Flows
	Skipping Flows
	Creating Flows from a JobConf
	Creating Custom Flows

	3.6 Cascades

	4. Executing Processes
	4.1 Introduction
	4.2 Building
	4.3 Configuring
	4.4 Executing

	5. Using and Developing Operations
	5.1 Introduction
	5.2 Functions
	5.3 Filter
	5.4 Aggregator
	5.5 Buffer
	5.6 Operation and BaseOperation

	6. Advanced Processing
	6.1 SubAssemblies
	6.2 Stream Assertions
	6.3 Failure Traps
	6.4 Event Handling
	6.5 Template Taps
	6.6 Scripting
	6.7 Custom Taps and Schemes
	6.8 Custom Types and Serialization
	6.9 Partial Aggregation instead of Combiners

	7. Built-In Operations
	7.1 Identity Function
	7.2 Debug Function
	7.3 Sample and Limit Functions
	7.4 Insert Function
	7.5 Text Functions
	7.6 Regular Expression Operations
	7.7 Java Expression Operations
	7.8 XML Operations
	7.9 Assertions
	7.10 Logical Filter Operators

	8. Best Practices
	8.1 Unit Testing
	8.2 Flow Granularity
	8.3 SubAssemblies, not Factories
	8.4 Give SubAssemblies Logical Responsibilities
	8.5 Java Operators in Field Names
	8.6 Debugging Planner Failures
	8.7 Optimizing Joins
	8.8 Debuging Streams
	8.9 Handling Good and Bad Data
	8.10 Maintaining State in Operations
	8.11 Custom Types
	8.12 Fields Constants
	8.13 Look at the Source Code

	9. CookBook
	9.1 Tuples and Fields
	9.2 Stream Shaping
	9.3 Common Operations
	9.4 Stream Ordering
	9.5 API Usage

	10. How It Works
	10.1 MapReduce Job Planner
	10.2 The Cascade Topological Scheduler

